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NOMENCLATURE 

The nomenclature used in this dissertation will, with the exceptions 

described below, follow the conventions set down by lUPAC. Simple 

organosilicon compounds will be named as derivatives of silane (SiH^), 

while more complicated linear and cyclic systems will be named as 

sila-analogs of the corresponding carbon system. 

Examples; 

MCgSiClH Dimethylchlorosilane 

^s^SiMe„H Allyldimethylsilane 

Silicon centered radicals will be named as derivatives of the 

parent silyl radical (H^Si*). Silicon centered radicals of disilanes 

will be named as derivatives of the disilanyl radical (HTSiHgSi-). 

Examples: 

Me^ Me^ 1,2-Diallyl-l,1,2,2-tetramethyldisilane 

1,1,3-Trimethyl-1,3-disilacyclo-
pent-4-ene 

Me^Si• Trimethylsilyl radical 

Meg 

Vinyldimethylsilyl radical 

MeySi-Si" Pentamethyldisilanyl radical 
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vi 

All compounds containing (p-p) ir-bonded silicon will be named as 

derivatives of silene (H2Si==CH2). Divalent silicon species will be 

named as derivatives of silylene (zSiHg). 

Examples; 

SissCH, 1-Methylsilene 

Me 
SissCH, 1,1-Dimethylsilene 

Me 
Si: Dimethylsilylene 

Me*^ 

ji: Allylmethylsilylene 
Me'^ 
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INTRODUCTION 

In the field of free radical chemistry, most of our present 

knowledge and understanding comes from the work done with carbon-centered 

radicals. Much of the emphasis has been devoted to intramolecular 

addition of alkenyl carbon radicals. These reactions often have 

synthetic utility since a very high degree of selectivity is usually 

encountered. The Beckwith rules (1) were developed,in an attempt to 

explain the high selectivity observed in intramolecular carbon 

radical cyclizations. The rules state that lower alkenyl carbon 

radicals (£ C^) cyclize in a kinetically preferred exo-fashion. The 

Beckwith rules have also been extended to include other atoms (2). 

The intramolecular addition of silicon-centered radicals has not 

been as well-studied as its carbon analog. This is surprising when one 

considers the progress that has been made toward understanding the 

physical properties, structure and reactivity, and stereochemistry of 

silicon and other Group IVB radicals. Many generalizations based on 

silicon radicals, however, are possible as these radicals are found 

to share many common features with carbon radicals. There are, however, 

some features that are quite different. Although there were no definitive 

studies available, it was suggested by the Beckwith rules that cyclization 

of alkenyl substituted silicon radicals would also favor exo-closure (1). 

This dissertation will describe the generation and cyclization of 

some alkenylsilyl and alkenyldisilanyl radicals. When generated in 

dilute aromatic solutions, these radicals gave products consistent with 
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an endo-mode of cyclization. This is opposite to that which would be 

predicted by the Beckwith rules. The generation of silicon radicals 

in the gas phase from allysilanes is also presented. Depending on 

the nature of the radical, endo-cyclization or disproportionation to 

silenes occurs. The silenes then undergo a series of rearrangements 

to silacyclic products. A new mechanism for the rearrangement of 

1,2-diallyltetramethyldisilane to 1,1,3,3-tetramethyl-l,3-disilacyclo-

pentene (3) is put forth. The new mechanism involves a silene to 

silylene rearrangement (3,4). 

Some interesting results on the pyrolytic behavior of some 3-butenyl-

silanes will be discussed. The initial step in the decomposition of 

these compounds is found to be carbon-allyl hemolysis which generates 

a-silyl radicals. 

Also, described in this dissertation are some attempts to generate 

silyloxy radicals using allyloxysilanes as precursors. However, no 

definitive evidence of silyloxy radical cyclization was obtained since 

the precursors decomposed via alternate but equally interesting path

ways. 
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HISTORICAL 

Carbon Radical Cyclization and the Beckwith Rules 

A brief summary of the literature pretaining to carbon radical 

cyclization will be given. Emphasis will be focused on the cyclization 

and rearrangement of carbon radicals and, therefore, a detailed 

description of the methods used to prepare them will not be given. The 

Beckwith rules (1) of radical cyclization will also be discussed. Due 

to the extensive amount of literature published on the subject of 

intramolecular addition of radicals, only the material that may be 

necessary for understanding the work presented in this dissertation 

will be covered. An excellent review covering radical cyclizations 

through 1982 and the Beckwith rules has recently been published by 

Surzur (2). 

The 5-hexenyl radical 

Perhaps one of the most widely studied intramolecular addition 

reactions is that of the 5-hexenyl radical. Much of the interest stems 

from the ease with which it cyclizes and the high yields that are often 

obtainable. Although the direction of cyclization may vary with 

changes in the radical structure, the parent 5-hexenyl radical cyclizes 

with a very high degree of selectivity. The reason for the selectivity 

will be discussed later in this section. Because the behavior of the 

5-hexenyl radical has been well-substantiated, with much kinetic data 

available on the subject, it is often used as a major carbon radical 

probe in mechanistic studies. 
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Intramolecular addition of 5-hexenyl radicals was first proposed 

by Marvel and Vest (5) and Butler and Angelo (6) in 1957. Working 

independently, they polymerized 1,6-dienes and found that the products 

lacked unsaturation. They proposed that the initially formed radical 

must have cyclized. The cyclic radical Intermediate was then proposed to 

initiate a series of propagation steps. Berson and coworkers (7) a 

short time later reported a simpler case of intramolecular free radical 

addition. They found that three major products, 2, 3, and 4, were 

obtainable from the thermal decomposition of 2,2-bis(azocamphane) 1. 

These products were consistent with the occurrence of two distinct 

$ 
2 

Î 
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intramolecular additions followed by either hydrogen abstraction giving 

3 or beta-scission leading to 4. 

The work of Lamb and coworkers (8) was very instrumental in 

understanding the behavior of the 5-hexenyl radical. These authors 

observed that methylcyclopentane was the major product formed from the 

thermal decomposition (77°C in toluene) of 6-heptenoyl peroxide (Scheme 1). 

Scheme 1 

This result was unexpected since methylcyclopentane was derived from a 

primary radical rather than the thermodynamically more stable secondary 

radical. Furthermore, the possibility of direct interconversion of the 

cyclopentylmethyl and cyclohexyl radical was ruled out since, when 

generated at 77°C from the acyl peroxides in toluene, these radicals 

gave only methylcyclopentane and cyclohexane, respectively (Scheme 2). 

Lamb therefore concluded that intramolecular addition of the 5-hexenyl 

radical was irreversible and that the favored exo-cyclization to methyl

cyclopentane was under kinetic control. 

(CH2=CH(CH2)3CH2-C02)2 —> 2 CH =CH(CH2)2CH2' 

,phcH ^  CH2=CH(CH2)3CH3 (6%)  +  PhCHg" 
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Scheme 2 

(i) Ô Ô 
CH 

O 
More support for the irreversible behavior of the 5-hexenyl radical, 

as well as its preference for the energetically unfavored exo-cyclized 

radical, was later given by Walling and Pearson (9). They examined 

the cyclization of the 5-hexenyl radical at 60° and 120°C when generated 

from the corresponding mercaptan in excess triethylphosphite containing 

azobisisobutyronitrile (AIBN) initiator. At the lower temperature, 

methylcyclopentane was obtained in 43% yield as the only cyclic product. 

The yield of methylcyclopentane was increased to 50% when the reaction 

was carried out at 12G°C. At 120°C, however, a 3% yield of cyclo-

hexane was also observed. 

Kochi and Krusic (10) have examined the 5-hexenyl radical using 

electron spin resonance (ESR). When the 5-hexenyl radical was generated 
0 

by photolysis (2500 - 3500 A) of 6-heptenoyl peroxide, its ESR signal 

was directly observable at -75°C. Upon warming to -35°C, the ESR 
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spectrum of only cyclopentylmethyl radical was seen. At -55°C, both 

the 5-hexenyl radical and the cyclopentylmethyl radical were detected. 

The irreversibility of the rearrangement was confirmed by the observation 

of only the cyclopentylmethyl radical spectrum, even up to 0°C, when 

this radical was generated by photolysis of cyclopentylacetyl peroxide. 

These experiments suggest that intramolecular addition of the 5-hexenyl 

radical occurs predominantly in an irreversible exo-fashion. 

Griller et al. (11) and Schmid and Ingold (12) used a similar 

technique in order to obtain rate constants for the intramolecular 

addition of the 5-hexenyl radical. The temperature dependent rate 

constants for the formation of the cyclopentylmethyl radical are: 

K = 0.34 X 10^ sec'l at -85°C, k = 17.0 x 10^ sec"^ at -45°C, k = 1.78 x 

10^ sec"^ at AO°C. At 25°C, the rate constant was 1.0 x 10^ sec"^, the 

activation energy was 7.8 kcal/mol, and the Log A-factor of 10.7. 

Substitution at the radical center with a stabilizing group can 

cause a change in the preferred mode of cyclization. In otherwords, 

the cyclization process may become reversible. The reversible nature 

of the 5-hexenyl radical when substituted with stabilizing groups was 

clearly established by Julia and coworkers (13,14) (Scheme 3). Radicals 

8 and 10 were formed from t-butyl peresters 5 and 7, respectively. The 

ratio of products 12/11 obtained from these radicals was compared to that 
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Scheme 3 

t-BuO?C X — ^ 

=o 

tA, 

t-BuO^C 
— 3 

X Y 
7 

(In.) 

X Y 

X 
X Y 

10 

X = CN 

X Y Y = CO^Et 

obtained when radical 9 was formed from the corresponding acyclic 

derivative 6. When compound 6 (3.75 X 10" mole/liter initial concen^ 

tration) was heated at 81°C in cyclohexane containing benzoyl peroxide 
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—2 as an initiator (7.5 x 10" mole/liter initial concentration) the ratio 

12/11 was 86:14. Thermolysis of perester 5 under the same conditions 

gave a ratio of 80:20 while thermolysis of the perester 7 afforded a 

ratio of 85:15. The closeness of these results supports the idea of 

a reversible process involving the radicals shown in Scheme 3. However, 

worth noting is that while these cyclizations are reversible, they do 

not represent a system in equilibrium. In other words, each of the 

radicals is capable of conversion to products in an irreversible 

manner. Also, the ratio of 6-membered/5-membered ring products may 

not always be the same. It has been demonstrated that the ratio is 

largely dependent on experimental conditions. For example, Julia and 

Maumy found that when acyclic radical 9 is generated at -70°C under 

photolytic conditions, the ratio is reversed to 20:80 (12/11). At this 

temperature, cyclization must be predominantly a kinetically controlled 

process. Thus, at low temperatures the behavior of appropriately 

substituted 5-hexenyl radicals (9, X = CN, Y = COgEt) parallel that of 

the parent radical (9, X = Y = H). At higher temperatures where the 

radicals may equilibrate, the thermodynamically more stable cyclohexyl 

radical 10 is obtained. 

The influence of alkyl substituents on the direction of cyclization 

of the 5-hexenyl radical has also been examined. However, unlike when 

substituted with stablizing groups, alkyl substituted carbon radicals 

undergo irreversible cyclization. An extensive study on 1-methyl and 

5-methyl substituted 5-hexenyl radicals, as well as the parent 5-hexenyl 
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radical, was done by Walling and Cioffai (15). The radicals were 

generated between 40° and 70°C from the corresponding bromohexenes and 

tributylstannane (0.02 mole/liter) in benzene. AIBN was used as the 

radical initiator. Scheme 4 outlines the competing steps which would 

Scheme 4 

15 

R-. 

Y 
13 

R. 
ka 

17 18 

determine the product ratios. Upon examination of the data in Table 1, 

one finds that cyclization of 5-hexenyl radicals proceeds in good yields. 

Also, the yield of product 18 is found to increase with increasing 

stability of the radical center (compare entries 1 and 3, entries 3 

and 5). Stabilization of the cyclic radical intermediate also appears 
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Table 1. Reduction of bromo alkenes by tributylstannane at 70°C 

% Yield Ratio 
Entry 13 14 17 18 kac/kab 

1 Rl=R2=R2=H 8.8 90.1 1 < 0.008 

2 R^=R2=H, R2=CH2 17.6 80.0 3.4 0.040 

3 RI=CH3, R2=RJ=H 8.7 88.4 2.9 < 0.03 

4 R^=R2=CH2, R2=H 7.9 76.8 15.3 0.15 

5 7.0 79.8 13.2 0.36 

6 RJ^=R2=R3=CH3 5.4 46.9 47.7 1.28 

to play a role in increasing the yield of the thermodynamic product 

(compare entries 1 and 2, entries 5 and 6). These authors also obtained 

cyclization rate constants for the six methyl 5-hexenyl radicals. 

These rate constants are shown in Table 2. Although the reason for the 

Radical kab, sec"^ x 10^ kac, sec"^ x 10^ 

Ô 1.1 < 0.005 

0.9 < 0.024 

IT 0.92 0.19 

-iJ 0.62 0.54 
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decrease in kab, or increase in kac, upon substitution is not completely 

understood, it is clear that alkyl substituants do effect the direction 

of cyclization. However, there is still a strong preference for the 

exo-mode of addition. 

Similar rate data were also obtained by Beckwith and coworkers (16) 

working with methyl substituted 5-hexenyl radicals. The radicals were 

prepared by the same methods used by Walling and Cioffai. Beckwith 

et al. suggested that changes in the product ratios were not due to 

increased stability of the initial radical. In other words, the 

relatively small change in the ratios was not in accordance with the 

large differences in formation between primary, secondary, and tertiary 

radicals. This also suggested that the stability of the incipient 

radical was not a key factor. Furthermore, they believed that the 

increased yield of the six-membered ring product was mainly due to a 

lowering of kab rather than an enhanced kac. The rationale for this 

belief was not at all made clear. However, the quantitative results 

support previous findings that alkyl substitution does effect radical 

cyclization but not so as to change the perferred exo-mode. 

Butler and Smith (17) have looked at the effect of methyl and 

phenyl groups at the internal position of the n-bond in the 5-hexenyl 

radical. The technique used in generating the radical was the same as 

that reported by Walling and Cioffai (15) and Beckwith et aJ. (16). 

Scheme 5 outlines the reactions of the two radicals studied. To check 

the irreversibility of the process, the (3-phenyl-3-tetrahydrofuranyl)-
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Scheme 5 

n 

iBu^SnH 

X) 
21 

+ Bu^SnH 

AIBN 

Xj  ̂"t) 
20 

BUjSnH 

M 

XJ 
22 

Bu_SnH I J 

t) 
23 

methyl radical was generated under the same conditions as radical 20 

(90°C, 1.5 mole % AIBN initiator). 3-Phenyl-3-methyltetrahydrofuran 

Br 
Bu^SnH 

J >o 
Ph 

TJ 
was the only product obtained thereby demonstrating the stability of the 

radical. This result suggests that, once formed, the cyclic radical 

intermediates in Scheme 5 do not go back to acyclic radical 20. The 
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relative rates of cyclization as well as the actual product yields at 

various temperatures are given in Table 3. The product yield of 

Table 3. Relative rates of cyclization of 20a and 20b with AIBN 

Temp. % Yield 
Radical °C k^/kg 21 23 

2-Methallyloxyethyl 20a 40 43 75.2 1.75 

90 30 80.2 2.67 

125 24 79.4 3.22 

2-(2-Phenylallyloxy)ethyl 20b 40 0.55 24.9 45.6 

90 0.52 25.3 48.7 

125 0.50 26.0 51.6 

3-methyltetrahydropyran 23 reaches a maximum of only 3% from 2-methallyl-

oxyethyl 20a. The 2-(2-phenylallyloxy)ethyl radical 20b, however, gives 

3-phenyltetrahydropyran 23 as the predominant cyclic product. These 

authors concluded that the controlling factor in the product distribution 

was the increased stability of the benzylic radical intermediate. Butler 

and Smith used their kinetic data to estimate the activation energies 

for the cyclization reactions relative to the activation energy of 

hydrogen abstraction from tri-n-butylstannane by a primary radical. Wilt 

et^. (18) calculated the activation energy of the hydrogen abstraction 

to be between 6.8 and 8.2 kcal/mol based on some published rate constants 

(19). Since the rate constants for hydrogen abstract of 2-methallyl-

oxyethyl 20a and 2-(2-phenylallyloxy)ethyl 20b should be the same. 
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a comparison of the relative activation energies of cyclization was 

possible. These data are given in Table 4. Based on these values, the 

Table 4. Relative activation energies of cyclization of 20a and 20b 

Ea-EA abst.) ^-1 

Entry Product kcal/mol at 40°C 

1 3-Phenyl-3-methyltetrahydrofuran 1.3 + 0.25 5.3 X 1—•
 
o
 

2 3-Phenyltetrahydropyran 1.6 + 0.25 9.6 X 10^ 

3 3,3-Dimethyltetrahydrofuran 2.2 + 0.15 6.1 X 10^ 

4 3-Methyltetrahydropyran 3.9 + 0.3 1.4 X 10^ 

phenyl group seems to cause a 2.4 kcal/mol lowering of the activation 

energy of cyclization to the pyran ring (compare entries 2 and 4). 

Stabilization of the incipient radical might also help explain why 

pyran formation competes more favorably in the phenyl substituted 

radical than in the methyl system. Also given in Table 4 are the rates 

of cyclizations (kc) for each product. The total rate constants for 

cyclization in the methyl and phenyl systems are approximately 6.2 x 10^ 

and 1.5 X 10^ s"^, respectively. The fact that the phenyl system is 

almost twice as fast as the methyl is most likely due to the greater 

stability of the benzylic radical intermediate leading to the six-

membered ring. Therefore, it appears that the proportions of six-membered 

and five-membered cyclic products is dependent on the activation energies 

of the competing cyclization pathways. Noteworthy is that cyclization of 

the 2-(2-phenylallyloxy)ethyl radical 20b still does not overwhelmingly 

favor endo-cyclization. 
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The 4-pentenyl radical 

Attempts by several workers to obtain cyclic products from the 

4-pentenyl radical have failed. Gordon and Smith (20) were among some 

of the earlier workers to recognize the reluctance of the 4-pentenyl 

radical to cyclize. When the radical was generated by electrolysis of 

hex-5-enoic acid, Garwood and coworkers (21) observed only radical 

dimerization. Walling and Pearson (9) prepared the 4-pentenyl radical 

CH acCHCHgCH CHgCOgH -^> CH2==CHCH2CH2CH2 > 

> CH2==CH(CH2)gCH==CH2 

under the same conditions used to generate the 5-hexenyl radical but 

were still unable to observe any cyclic product. The 4-pentenyl radical 

was later generated from 5-hexenoyl peroxide in toluene, but Lamb et al. 

(22) did not obtain any cyclic products. 

In special cases, cyclization of the 4-pentenyl radical has been 

observed. In these instances, however, the five-membered (endo) cyclic 

product and not the four-membered (exo) cyclic product is the only one 

observed. For example, the vibrationally excited 4-pentenyl radical has 

been reported (23) to cyclize to cyclopentene. The 4-pentenyl radical 

was formed by intramolecular hydrogen abstraction of the l-pentenyl 

radical, generated by photolysis of azo-n-propane in the presence of 

a c e t y l e n e  a t  4 6 ° C  ( S c h e m e  6 ) .  
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Scheme 6 

•Q ̂  à -— O 
Another special case of cyclization involving a A-pentenyl radical 

has been reported independently by several workers (24,25,26,27). The 

radical was generated by intermolecular free radical addition to cis,cis-

1,5-cyclooctadiene (Scheme 7). The yield of cyclization products was 

Scheme 7 

25 

X-Y X» 

X-Y = HCClj, HCONRg, HCOR, 

ClCCl?, HCClg, COgEt, 

HSR, HBr 

as high as 74%. While the cyclization of radical 24 may be viewed as 

an endo 4-pentenyl closure, it is just as likely that process involves 

an exo 5-hexenyl radical closure. In all the cases studied, none of 

the cyclobutyl product was reported. 
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Wilt and coworkers reported that y-pheny-4-pentenyl radical 

cyclized in good yield to phenylcyclopentane (28). Due to an ambiguity 

in the method used to generate the radical, however, an alternative 

carbonium ion rearrangement to phenylcyclopentane could not be ruled out. 

The only example in which a 4-pentenyl radical cyclized to a 

cyclobutyl compound (exo-mode) was reported by Piccardi et (29). 

The radical was generated similar to a procedure already discussed 

involving addition of trichloromethyl radical to the Tr-unit of 

3,3,4,4-tetrafluoro-l,5-hexadiene. The authors also report formation of 

the cyclopentyl derivative (endo-mode). 

The 3-butenyl/cyclopropylcarbinyl radical rearrangement 

Like the 5-hexenyl radical, the 3-butenyl radical cyclizes in an 

exo-manner. However, isolation of the cyclized product has not been 

possible since the reverse reaction is much more facile. Indeed, the 

cyclopropylcarbinyl to the homoallylic (3-butenyl) radical isomerization 

is known to be an extremely rapid process in free-radical chemistry 

(2,30) (Scheme 8). This rearrangement has been used as a major carbon 

probe in mechanisms involving free-radicals. 

Ph 
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Scheme 8 

kl 

!>-• —^ 

Using ESR techniques and deuterium labeling, Maillard et (31) 

and Effio and coworkers (32) have obtained the rate constants for the 

isomerization shown in Scheme 8. The rate constant (k^) for beta-

cleavage of the cyclopropylcarbinyl radical, was measured as 1.3 x 10® 

sec~^ at 25°C. The energy of activation at 25°C is 5.94 kcal/mole with 

a Log A-factor of 12.48 sec"^. For the reverse reaction: k_^=9.4 X 

10"^ sec'l at 40°C, 2.6 x 10"'^ sec"^ at 60°C, 6.2 x 10^ sec"^ at 80°C. 

The activation energy for the reverse process is 9.09 kcal/mole with a 

Log A-factor of 10.36 sec"^. Also calculated, was an equilibrium 

constant of 1.3 x lo'^ at 25°C. These data clearly indicate that the 

forward reaction, represented by k^ in Scheme 8, is much more favored 

than the reverse k_^ process. Therefore, isolation of products of the 

exo-cyclized 3-butenyl radical is not possible. 

The facile nature of the reversible rearrangement shown in Scheme 

8 was recognized as early as 1967 by Halgren and coworkers (33). They 

examined the rearrangement of the y,Y-diphenylallylcarbinyl radical 27 

and the diphenylcyclopropylcarbinyl radical 28. The radicals were 

generated from the respective t-butyl peracetates at 125°C and afforded 

compounds 29, 30 and 31. Compound 30 was proposed to have arisen from 

the homoallylic radical 27. Based on thermodynamic considerations. 
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>*-<I 
Ph^ 

27 28 

o6 
30 

the diphenylcyclopropyl radical 28 should be more stable. Therefore, 

one would expect a higher yield of product 31. However, the product 

distribution shown in Table 5 indicates a predominance of products arising 

from diphenylhomoallylic radical 27. The beta-scission of the cyclo-

propylcarbinyl radical far out weighs its thermodynamic stability. 

Spectroscopic evidence for the isomerization of the cyclopropyl-

carbinyl radical to the homoallylic radical was first obtained in 1969. 

Kochi, Krusic, and Eaton (34) recorded the ESR spectrum of the two species 

between -140°C and 0°C. The cyclopropylcarbinyl radical was formed by 

P>—CH3 4- (CH^J^CO. CH2' 

1 

7'<1 Ph 

, Ph' 

Ph-" 
29 31 

-100° 
to 0°C 
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hydrogen abstraction from the methyl group of cyclopropyl methane with 

photochemically generated t^butoxy radical. Isomerization to the 

homoallylic radical occurred between -100°C and 0°C. 

Table 5. Thermolysis of the peracetates of 27 and 28 at 125°C 

Solvent Perester of 
% Yield 

30 31 

1,4-cyclohexadiene 30.0 11.9 0.3 

cyclohexane 27 1.0 26.5 0.1 

1,4-cyclohexadiene 28 45.0 11.0 14.6 

cyclohexane 1.1 23.5 7.5 

Substitution at the radical center of the cyclopropylcarbinyl radical 

has recently been shown to decrease the rate constant for the 6-cleavage, 

k^, by a factor of about ten (35). The activation energies in the same 

X 

J k.is 2 X 10^ sec ^ 

Ea #7.2 kcal/mol 

a: X = H, Y = OSiMe^; b: X = H, Y = OSiMegBu^; c: X = Me, Y = OSiMe^ 

study were raised on the average by approximately 2 kcal/mol. Such 

changes in the radical structure, however, still do not make feasible the 

isolation of the cyclopropyl carbinyl product. 
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In all of the studies done on the isomerization of the cyclopropyl 

carbinyl to the 3-butenyl radical, and vice versa, products derived from 

the cyclobutyl radical have never been reported. Several theoretical 

studies (36,37,38) have looked at the energy differences between the 

three isomeric radicals, Dewar and Olivella (36) performed some 

calculations using a spin-unrestricted version of the MINDO/3 procedure 

together with the associated DFP geometry program. The heats of formation 

at 25°C for 32, 33, and 34 were 37.9 kcal/mol, 37.4 kcal/mol, and 26.7 

kcal/mol, respectively. Although the accuracy of the actual numbers 

may be questionable, the relative stability of the radicals is quite 

clear. The cyclobutyl radical must be some 5 to 10 kcal/mol more stable 

than either of the other two isomers. The reason for the reluctance of 

3-butenyl radical 33 to cyclize to cyclobutyl radical 34 may be due to the 

differences in the transition state geometries of J4 and 32. Dewar and 

Olivella calculated; AH^ = 67.4 kcal/mol for the 33 to 34 transition 

state, AH„ = 50.3 Kcal/mol for the 33 to 32 transition state. Based on 
f — — 

these calculations, cyclization to the exo cyclopropylcarbinyl radical 

should vastly be favored over the endo-closure to 34. More discussion 

on the transition state geometry will be given in the next section. 

33 
^ • 

34 
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Higher homologs of the 5-hexenyl radical 

Intramolecular addition of alkenyl radicals having longer chain 

lengths than the 5-hexenyl radical have not been extensively studied. 

Cyclization of the higher homologs usually occurs much slower and in 

reduced yields. Intramolecular 1,5-hydrogen atom transfer is another 

complication present in the higher homologs of the 5-hexenyl radical. 

This problem was pointed out by Beckwith and Moad (39) while studing 

the 6-heptenyl radical. However, when the 6-heptenyl radical (AO), as 

well as the 7-octenyl radical, underwent intramolecular addition, they 

did so in a predominantly exo-fashion. The ratio of the relative rate 

constants for the six-membered/seven-membered ring closure was approxi

mately 5:1, while that for the seven-membered/eight-membered ring closure 

was over 100:1 (39). 

The Beckwith rules 

Many hypotheses have appeared in the literature in attempts to 

explain the high selectivity of radical cyclizations, particularly in 

the case of the 5-hexenyl radical. All of the explanations are based on 

steric, stereoelectronic, and entropie arguments or some combination 

of the three. The most frequently employed arguments have been reviewed 

(2,30). Perhaps the most concise and widely accepted explanation was 

given by Beckwith et (1), and Struble et (41). Their explanation 

for the observed selectivity was based on a stereoelectronic argument. 

> 
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The so-called Beckwith rules (1) state that intramolecular addition 

under irreversible kinetic control in lower alkenyl and alkynyl radicals 

and related species occurs preferentially in an exo-mode. The rules 

suggest that exo-ring closure, 36 to 37, is kinetically favored over the 

endo-closure of 36 to 35. Except for the 5-pentenyl radical, for which 

no cyclic products are observed, all of the other alkenyl radical 

discussed follow this preferred mode of cyclization. Some hetero-centered 

radicals also follow the Beckwith exo-mode of cyclization. Hetero-

centered radicals will be discussed in a later section. 

Beckwith and coworkers proposed that cyclization of radicals is 

largely under stereoelectronic control and that the transition state is 

sterically different from that of cationic cyclizations which usually 

give the larger ring products. Furthermore, the initial stage of the 

addition process involves interaction of the planar carbon radical with 

the lowest unoccupied orbital (LUMO) of the tr-system. Theoretical 

studies of the intermolecular addition of alkyl radicals to double bonds 

have revealed an early transition state with attack occurring along a line 

through one end of the double bond and orthogonal to the nodal plane of 

A=B 

35 36 37 
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the IT-molecular orbital (42). In other words, as shown in Scheme 9, 

this occurs best when approach of the radical is along a line extending 

almost vertically from the p-orbital of one of the n-bonded carbon 

atoms (IV versus III). Thus, the optimum mode of approach in the 

5-hexenyl radical is that which gives the exo-cyclized primary radical. 

Since the transition state occurs early, and is therefore more reactant-

like, there is little effect on product control by stabilization of the 

incipient radical. Also, note that the 1,3-diaxlal steric interactions 

of a six-membered ring transition state are removed upon forming a five-

membered ring (II versus I). Based on these arguments, the kinetically 

controlled exo-cyclization is preferred for radicals undergoing an 

irreversible process. 

Scheme 9 

H 

I II 

III IV 
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The selectivity observed in carbon radical cyclizations is also in 

keeping with the Baldwin rules for ring closure (43). Following Baldwin's 

nomenclature, intramolecular addition of alkenyl radicals would involve 

either an exo-trigonal or endo-trigonal process. The rules for a 

n o n  
^ endo X# exo ^ ^ 

trigonal system are: 

1. 3 to 7-exo-trigonal are favored; 

2. 3 to 3-endo-trigonal are disfavored. 

The numerical prefixes represent the ring size. Thus, the 5-hexenyl 

radical, the lower homologs, and the next two higher homologs should 

favor an exo-trigonal (rule 1) process. From the examples given earlier, 

one sees that this is indeed the case for carbon radicals. 

Silicon Radical Cyclizations and Disproportionations 

Silicon radicals undergo many of the same type reactions as its 

carbon analog. But unlike carbon radicals, silicon radicals have been 

observed to undergo relatively few intramolecular cyclizations. 

The most common reactions reported for these radicals are: 

1. Abstraction of halogens (30,44,45) 

RjSi- + RX > R Six + R- X = Br > CI > F 

2. Addition to multiple bonds (46,47,48) 

R SiH + ^C=C^ initiator ^ —CH 
3 / \ 3 j , 
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R SiH + —C=C— initiator ^ 3 
^  /  \ h  

RLSiH + ^C=0 initiator ^ H—C—OSiR^ 
3 / I 3 

Cl^SiH > RCl-SiH > R-ClSiH » RLSiH 

3. Aromatic substitution (49,50) 

RLSi + ArH > ArSiR, + H-
3 3 

Several methods now exist for generating silicon radicals. Some of 

the most common methods include mercury photosensitized cleavage of 

silylhrides (51), decomposition of bis(silyl)mercurlals (52,53), and 

photochemical decomposition of azo compounds (54). There are, however, 

few good thermal methods of producing silicon radicals. For example, 

hexaphenyldisilane, in contrast to its carbon analog, does not give 

triphenylsilyl radical upon thermolysis (55). Hexamethyldisilane, on 

the other hand, does decompose at 600°C giving the corresponding silicon 

radical (56). The utility of this method of generating silicon radicals 

has been limited by other reactions of appropriately substituted 

disilanes. It is well-known that disilanes undergo a-elimination under 

thermal conditions when substituted with hydrogen, a halogen or an alkoxy 

group. Newmann and Schultz have recently generated the trimesitylsilyl 

radical by irradiation of the corresponding chlorosilane in the presence 

of an electron rich olefin at -60°C (57). Perhaps the most widely used 

method of generating silicon radicals is by abstraction of a silylhride 

by another radical. Several radical initiators (Int*) have been used 

such as azobisisobutyronitrile (AIBN) and organic peroxides (48,58). 
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R^SiH + Int •> R Si- + IntH 

One of the first examples of intramolecular cyclization involving 

a silicon radical was reported by Sakurai and coworkers (59). (3-Phenyl-

propyl)-dimethysilane 38 was found to give dimethyl-l-silatetralin 43 

exclusively upon heating at 135°C (15 hours in a sealed tube) in the 

presence of di-tert-butyl peroxide (Scheme 10). One mechanism that was 

Scheme 10 
Me, 

2 

HSi—^ 
MGg 

38 Y = CH 

39 Y = SiMe 

41 
Me, 
2 

40 

2 

H 

=2 

43 Y = CHg 

44 Y = SiMe, 

2 

2 
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considered to account for product 43 was direct homolytic aromatic 

substitution in an endo-fashion (path a) followed by hydrogen loss. An 

alternative mechanism, however, may have involved the carbon radical 42 

(path b). The para-methyl derivation of 38 (X = CH^) was subjected to 

the same reaction conditions in order to distinguish these mechanistic 

possibilities. Formation of the isomer in which the methyl group was 

meta to silicon as the sole product led to the conclusion that cyclization 

occured via path a. The yield of dimethyl-l-silatetralin 43 was 14%. 

Compound 39 (Y = SiMe^) afforded similar results as those obtained 

for 38. There was no evidence of having formed a carbon radical inter

mediate of the type 42. 

Migration of a phenyl group from carbon to a silicon radical (40 

to 42) was demonstrated later by Sakurai and Hosomi (60). They found that 

upon heating (4-phenylbutyl)dimethylsilane 45 to 135°C in the presence 

of di-tert-butyl peroxide, both cyclized product 49 and rearranged product 

51 were formed (Scheme 11). Their results were explained by a mechanism 

involving competition between cyclization and rearrangement. From the 

intermediate spiro radical 47, products may be formed by either ring 

expansion to 48 or hemolysis to carbon radical 50. The possibility of 

direct cyclization of 46 to 48 was not addressed by these authors. 

The scope of this rearrangement was studied by examining a number 

of compounds of the general formula ArCHY(CH2)^SiMe2H. The results are 

summerized in Table 6. Cyclization products were only observed for n = 2 

and n = 3. 
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Scheme 11 

H— H—Si-
Me^ 

45 

Me. 

L 

t-BuO* 

1450c 

46 Si 
Me, 

47 

YHC 

CHLY 

50 

Sakurai et (61) have looked at the rearrangement process at 

temperatures of 37Q°C and 440°C. The products of this rearrangement are 

1 Wo u — SiMCgH SiMe^GH 
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Reaction of X-Ph-CHY(CH2)nSiMe2H and di-t-butyl peroxide at 135°C 

X Y Rearrangement Cyclization 

H H No No 

H H No No 

H Ph No No 

H H No No 

H H No Yes 

H Me No Yes 

H Ph No Yes 

Ë-CH; H No Yes 

H H Yes Yes 

H Me Yes Yes 

£-CH3 H Yes Yes 

H H No No 

H H No No 
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Table 7. Thermal rearrangement of X-Ph-G-SiMegH 

X G Temperature °C Yield 

H CHg 440 17.3-87.7 

CHg 440 — 

m—CH_ 
— 3 CHg 440 

H 370 0 

H 370 67.5 

H 370 100 

£-CH^ CH^SlMe.CH^ 370 100 

m-CH_ 
— 3 CHjSlMe^CH 370 100 

H 370 38.5 

H 370 8.7 

H 370 0 

formed via spiro intermediates similar to those already discussed. At 

these temperatures, however, cleavage occurs much more readily than ring 

expansion. The data for these rearrangements are given in Table 7. 

In a recent communication, Kira £t (62) reported that 

intramolecular aromatic ipso-substitution of a silicon radical was 

Involved in the elimination of dimethylsilylene from photolysis of 

dibenzo[c,e]-l,1,2,2-tetramethyl-l,2-disilacyclohexa-3,5-diene. 9,9-

Dimethyl-9-silafluorene was formed in a very high 85% yield. Evidence 

for the evolvement of a radical intermediate instead of a concerted 

elimination of dimethylsilylene was obtained when 2,2-bis(dimethylsilyl)-
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biphenyl gave the same product in 76% yield upon heating at 130°C in 

the presence of di-tert-butyl peroxide for 2 hours. 

Si-Si 
Me„ Me^ 

hv _ 

(85%) 
MegSl' 'SiMeg Meg'SiMOg 

Me ,Me 
\/ 
-Si 

# • \k 

Me^Si, HSiMe Me^SiH HSiMe, 

Intramolecular homolytic aromatic substitution of a silicon radical 

was also demonstrated in the pyrolysis of a [tris(trimethyl)methyl]-

diphenylsilyliodide 52 (63). Thermolysis of 52 at 350°C gave a complex 

I /SiMe 
(Me^Si)^CSiMePh ^ (Me,Si)^C ^ + I-

^ ^ ^ ^ SiMePh 

s ̂ 2 ^ Me, 

SiMe T /SiMe 
(Me,Si),C ^ < (Me,Si),C ^ > [( ) ;c(SiMe ) 

^ 2 ̂ SiMe^Ph ^ ^ ̂ SiMeJPh «si-^Si^ ^ ̂  
Meg 

54 55 56 
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mixture from which 1,3-clisilaindene 56 was identified as the major 

product. Compound 56 was reasoned as having come from hemolytic 

substitution of silicon radical 55. 

Most of the intramolecular cyclizations of simple alkenyl silanes 

have been done with metal catalysts. Several examples of these metal 

catalyzed cyclohydrosilylations using various metals have been published 

(64,65,66). Yields of the cyclization product may be as high as 92%. 

92.3% 5.8% 

Early on, Fessenden and Kray (67) showed that treatment of 5-(di-

methylsilyl)-l-hexene with chloroplatinic acid in pentane produced a 

mixture containing 73% yield of 1,1,2,5-tetramethylsilacyclopentane 57 

(73%) (trace) 

and only a trace of 1,1,2-trimethylsilacyclohexane 58. Swisher and Chen 

(68) reported the only study of systematically varying the chain length of 

the alkenyl substituent. The results are given in Table 8. Notice that 
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Table 8. Intramolecular hydrosilylation with H_PtCl, 
z 6 

n Total % Yield % A® % 

0,1 only polymer 

2 46.3 100 0 

3 58.1 10 90 

A 69.8 47.5 52.5 

5 16.4 45.8 54.2 

6 2.4 0 100 

-CH^CHr 

-> (CH 

A 

(ChL) 2'n CHL—CHj 

the endo-cyclizatlon product predominates only in the case of n = 2. 

In the case of 4-pentenyldimethylsilane (n = 3), Sakurai et al. found 

similar results (69). In most of the cases reported, it appears the 

cyclization to the smaller of the rings is the predominant reaction. 

Intramolecular hydrosilylation of vinyldimethylcarbinoxydimethyl-

silane has also been reported (70). The products formed in this reaction 

were rationalized as having come from a silaoxetane. However, no sila-

oxetane was ever isolated or observed spectroscopically. 

Me„Si HgPtClg 
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Sakurai (71) reported a study on the cyclization of some 4-pentenyl-

silyl radicals generated by abstraction of a silylhride by tert-butoxy 

radical (58,59). Two major cyclic products (type C and type D) were 

formed when the silanes were heated at 135°C and 30°C in sealed tubes. 

The results are summerized in Table 9. The reason for the observed 

Table 9. Cyclization of 4-pentenylsilane initiated by di-tert-butyl-
peroxide 

X Y 
% Yield at 1350c % Yield at 30°C 

X Y ca Oa C® 

Me Ph 0.65 5.46 1.47 9.48 

Ph Ph 0.74 6.1 3.1 12.6 

i-Pr CI 3.94 5.47 — — — 

Me CI 71.6 12.6 4.8 2.9 

X\ /Y \ / 
a ^ ̂SiXYH t-BuO* 

^ u ^ o 
C D 

selectivity and the distribution of yields was not clear. However, the 

more bulky groups seem to favor type D while substitution by a more 

electronegative group appeared to favor type C formation. This work was 

never published in a complete form. 

Very recently, Ingold and coworkers reported an ESR study 

on the intramolecular addition of some silyl and disilanyl radicals (72). 

The radicals were formed from the corresponding silyl hydride by 

abstraction with tert-butoxy radicals in cyclopropane at various 
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temperatures. The results are summarized in Table 10. At the silane 

concentrations (13% w/w) used in their experiments, the intermolecular 

addition was considerably faster than the cyclization process. Only in 

Table 10. E5R hyperfine splitting and assigned structures^ 

Alkenylsilane Radical Structure a^/G T/K 

\ / 
SiH 

65 

• » 

)C< 

n /  
SlSiH 

SiSiH 

17.3(4H) 

19.5(1H) 

17.6(4H) 

19.6(1H) 

17.5(2H) 

20.5(1H) 

25.2(2H) 

17.0(2H) 

21.0(1H) 

26.5(2H) 

4.0(1H) 

13.8(AH) 

14.3(1H) 

20.7(1H) 

38.5(2H) 

6.0(1H) 

19.5(1H) 

36.0(1H) 

295-225 

150-370 

295-225 

150-255 

295 

240 

200-250 

Peroxide decomposition of 3-butenyldimethylsilane, 59,  was not 
reported. 



www.manaraa.com

38 

the case of 4-pentenyldimethylsilane 64 and the dimethylpent-4-ene silane 

65 was intramolecular cyclization observed. From silane 65, 1,1,4,4-

tetramethyl-l-silacyclohexane 66 and 1,1,4,4-tetramethyl-l-silacyclo-

hexene 67 were isolated in 35% and 11% yield, respectively, based on a 

92% consumption of hydrido silane 65. No other products were isolated 

in this work. 

-Me Me 

67 
Me 

65 

Ingold et results indicate that endo-cyclization predominates 

over exo-cyclization for silicon radicals derived from 64 and 65. This 

is opposite that which would have been predicted according to the Beckwith 

rules. Attempts to measure the rate constant for cyclization failed, 

however, an upper limit of 10^ sec"^ at 173 K and a lower limit of 10^ 

sec~^ at room temperature were estimated. The estimates were based on 

similar experiments with triethylsilane and ethylbromide. The absence 

of an ESR signal for the silyl radicals also suggested a rapid process. 

Ingold et al. (72) offered an explanation based on bond lengths and 

configurations at the radical centers for the observed endo-regiochemistry. 

In other words, for the 5-hexenyl radical endo-cyclization is disfavored 

because the carbon radical cannot achieve the proper alignment of p-

orbitals for endo-closure (Scheme 9). However, with the silicon analog, 

the increased carbon-silicon bond length allows for optimum alignment of 
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the pyramidal silicon orbital with the terminal p-orbital of the Ti-system. 

The reason for the departure of silicon radicals from the Beckwith rules 

will be discussed in more detail in the Results and Discussion section. 

Also, some results that are complementary and supportive of Ingold et al. 

will be given; results that were completed prior to their report. 

The effect of increased bond length on the direction of cyclization 

due to silicon was demonstrated earlier by Wilt (73). Wilt examined the 

intramolecular addition of a-silyl radical 68 and the vinylsilylpropinyl 

radical 69 and obtained the results shown in Table 11. The radicals were 

formed by abstraction of the corresponding chlorides or bromides with 

tri-n-butyltln hidride (TBTN) with AIBN initiator. Notice that the 

Table 11. Radical cyclization using tri-n-butyltin hydride and 
azoisobutyronitrile at 366 nm 

Radical % Yield (rel. rate) of Product 

—X^iMeg 
\ / \__/ 

68 5(0.5) 11(1) 

Me„Si • 

\_V 
~~o Me.Si -J 

Me,sQ 

69 42(15) 3(1) 

increased carbon-silicon bond length in radical 68 leads to predominantly 

six-membered ring. The y-silyl group in radical 69 decreases the 

possibility of overlap with the terminal end of the n-system and, 
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therefore, results in predominantly five-membered ring formation. 

Although the author did not offer this explanation, based on Ingold et al. 

(72) results and the work to be presented in this dissertation, this seems 

to be the most reasonable way to explain the observed regioselectivity. 

The cyclopropyldimethylsilyl radical 7J. is another silicon radical 

that does not behave like its carbon analog. When cyclopropyldimethyl-

70 71 72 

silyl radical was generated by tert-butoxy radical abstraction from the 

corresponding hydrosilane, only the radical dimer 70 was formed (58). 

No products were observed that might have come from the rearranged 

carbon radical 72. The analogous cyclopropylcarbinyl radical undergoes 

facile ring opening to the 3-butenyl radical as previously discussed. 

The dicyclopropylsilyl and tricyclopropylsilyl radicals also fail to 

rearrange (71). 

Intramolecular cyclization to form a silacyclopropane has been 

reported to occur and the ESR spectrum of the cyclized radical recorded 

(74). When the 1,4-disilacyclohexadiene silyl radical 74 was generated 

by free radical abstraction of a hydrogen or deutrium from the 

corresponding hydrosilane 73, the ESR spectrum produced was consistent 

with having formed the silacyclopropyl carbon radical 75. Although this 

occurs formally by cyclization onto a vinyl group, it may also be viewed 

as an exo-closure of a 4-pentenyl silyl radical. 
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Me 

t-BuO 

Me ̂ Si Me 

> || |1 > Si—Me 

Me/'" "tie "42 
y Me X i \ 

Me X Me Me 
73 X = H, D 74 75 

As previously mentioned, there exist very few good thermal silicon 

radical generators. Davison and Wood (75), however, did report that the 

pyrolysis of trimethylallylsilane formed trimethylsilyl radical and 

propenyl radical as the main primary process. Between 580° and 730°C 

the reaction was first order, with an Arrhenius A-factor of 10^^'^ sec~^ 

Me^Six'^'^"^^ Me^Si* + 

and an activation energy of about 73 kcal/mol. At low pressure, the 

radicals gave trimethylsilane and propene; but at high pressure bi-

molecular reactions between the trimethylsilyl radical and trimethyl

allylsilane lead to tetramethylsilane (TMS) and trimethylvinylsilane. 

Cleavage of the allyl-silicon bond replaced mechanisms involving methyl 

loss (76) and methylene extrusion (77) that were previously envolked to 

account for the trimethylvinylsilane formed in this pyrolysis. 

Barton and Jacobi have used allyl and benzyl cleavage to prepare 

disilanyl radicals in the gas phase (3). Thus, upon the pyrolysis of 1,2-

diallyl-tetramethyldisilane 76 at 800°C in a vacuum (1 X 10~^ mm Hg), 
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l,l,3,3-tetramethyl-l,3-disilacyclopentene 78 was produced in 51% yield. 

They rationalized that the first step in the process was hemolysis of 

Me^ Me. 

76 

Me^ Me^ 

800°C ̂  /Si—Si 

10"^ torr c-
77 78 

the allyl-silicon bond giving the disilanyl radical 77. Radical 77 

could then undergo a sequence of rearrangements on to the observed product 

78. A more detailed mechanism on the rearrangement of 77 to 78 will 

be given in the Results and Discussion section. A new mechanism for the 

formation of 78 from diallyldisilane 76 will also be discussed. Similar 

products are formed when l-allyl-2-benzyltetramethyldisilane is pyrolyzed 

under the same conditions. However, the 1,2-disilaindane, formed in 29% 

yield, must have come from direct intramolecular aromatic substitution 

of 2-benzyl-l,l,2,2-tetramethyldisilanyl radical. 

Meg Me_ 

.Si—Si 800°C 

10~^ torr 
Me^Si SiMe. 

78 (<5%) 

(29%) 
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Other allylsilanes have been suggested to decompose via a concerted 

retroene elimination of propene to form silenes. This topic will be 

dealt with in the Results and Discussion section. 

Until recently, the disproportionation of silicon radicals was 

thought to be a minor process. Indeed some early studies with methyl-

silyl, dimethylsilyl, and trimethylsilyl radicals generated photo-

chemically (Hg6(^P.)) supported this belief (78). Since then, several 

investigations have been done to advance the understanding of this reaction. 

Kinetic data is now available on the rate of combination (kc) of 

silicon radicals. Watts and Ingold (79) using electron paramagnetic 

spectroscopy techniques obtained a bimolecular rate of combination 
O  ̂1 1 

of trimethylsilyl radical equal to 5.5 X 10 M" sec" in solution. 

kp 
2  Me,Si- — M e ^SiSiMe, 

3 3 3 

O — 1 — 1 
This value was much higher than that of 3.16 X 10 M~ sec" previously 

calculated by Thynne (80). Watts and Ingold did not observe any 

significant amount of disproportionation occurring. The rate of combi

nation, kc, has also been measured in the gas phase. In a short 

communication, Cadman et (81,82) reported kc to be 1.78 X 10^^ M~^ 

sec"^ using a rotating sector technique between 44° and 126°C. The 

combination reaction was found to be competitive with abstraction of 

chlorine from methyl chloride. These authors also did not report any 

products derived from disproportionation (82). 
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A relative ratio for kd/kc of 0.046 was reported a short time after 

by Strausz and coworkers (83) but they gave no experimental basis for 

2 Me^Si- — > Me2Si=CH2 + Me^SiH 

the ratio. It was not until 1980 when Strausz et reported that upon 

photolysis of bistrimethylsilyl mecury at room temperature, an almost 

identical kd/kc ratio of 0.05 ± 0.01 was obtained (84). 

Tokach and Koob (85,86) were among the first to obtain evidence for 

the disproportionation of a silyl radical to a silene at room temperature. 

Mercury photosensitized reaction of trimethylsilane with added per-

deuterated methanol gave deuterated trimethylmethoxysilane in good yield. 

Me^Si==CH_ + [LCOO > Me^Si—OCD, 
2 2 3 2| 3 

CHgD 

This was the expected product of methanol trapping of dimethylsilene. 

The kd/kc value obtained at 25°C was 0.31 ± 0.08. 

Caspar and coworkers have also demonstrated that disproportionations 

of silicon radicals is important in solution chemistry. In some kinetic 

ESR experiments at short reaction times, hexamethyldisilane and tert-

butyl alcohol were the only compounds formed from the photolysis of 

trimethylsilane and di-tert-butyl peroxide (87). They concluded that 

radical recombination was the exclusive mode of self-reaction for 

trimethylsilyl radicals. At longer irradiation times, however, a third 

product was formed (88). The product was identified as tert-butoxy-
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trimethylsilane which was believed to have come from trapping of dimethyl-

2 Me^Si- > Me^SiH + Me2Si==CH2 

Me Si=CH2 + -j-OH > -foSiMe^ 

silene with tert-butyl alcohol. At short reaction times, the low 

concentration of tert-butyl alcohol did not allow for efficient trapping 

of the disproportionation product. With excess tert-butyl alcohol added, 

the trapping occurred immediately. A value of 0.2 for kd/kc was measured 

at 25°C. The disproportionation process must be very fast since the 

combination reaction is near the diffusion controlled limit (kc = 5.5 X 

10^ sec"^). 

Other examples of disproportionation of free silicon radicals in 

solution are found in the literature (89,90,91). Further elaboration 

on them is not necessary. 

Evidence for the disproportions of silicon radicals in the gas 

phase comes from some early work of Davidson and Lambert with trimethyl

silane (92,93). Pyrolysis of trimethylsilane in a quartz stirred-flow 

reactor between 670°C and 758°C gave l,3-dimethyl-l,3-disilacyclobutane 

and tetramethyl-l,3-disilacyclobutane along with hydrogen and methane. 

The intermediate silenes that characteristically give 1,3-disilacyclo-

butanes (94) were accounted for by a mechanism involving bimolecular 

disproportionation. 
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-CH SiMegH + HMe^Si > Me^SiH + MeHSl^CH^ 

-CHgSiMegH + Me^Si- •> Me^SiH + Me2Si=CH2 

-CHgSiMegH + -CHgSiMegH > Me^SiH + Me2Si~CH2 

Other workers investigating the decomposition of trimethylsilane 

have suggested unimolecular formation of the silenes via homolytic bond 

cleavages (95,96). This would require loss of another methyl or hydrogen 

radical from the first-formed radical intermediate. Very recently, Ring 

et (97) have reported such a unimolecular disproportionation. The 

radicals were generated from dimethysilane using a single pulse shock 

tube reactor between 677°C and 1027°C. Reaction times were approximately 

300 psec. 

Clifford and coworkers (98) investigated the flow pyrolysis of 

tetramethylsilane between 537° and 707°C (0.1-30 mm Hg). Moderate yields 

of trimethysilane (35%), tetramethyl-l,3-disilacyclobutane (40%), 

hexamethyldisilane (15%), and tetramethyl-2,4-disilapentane (8%) were 

formed as the major products along with methane and ethane gas. Scheme 12 

outlines the proposed mechanism that accounts for these products. The 

activation energy for the homolysis of the Si—CH^ bond was measured as 

67.6 kcal/mol. This value is much lower than the bond dissociation 

"CH + Me2SiH2 > .CH SiMeH2 

Ck^SiMeHg •> CH2=SiH2 + -CH^ 
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Scheme 12 

/\ 
Me Si > Me^SiH + Me^SiSiMe, + Me.Si SiMe^ + Me,SiCH„SiMe, 4  5  3 3  2  x y  2  3 2 3  

35% 15% 40% 8% 

Me^Si > Me^Si* + -CH^ 

2 Me^Si- > Me^SiH + Me2Si=CH2 

/\ 
Me_Si=CH_ > Me_Si SiMe„ 
2 2 2 \y 2 

Me^Si- + Me^Si > Me^SiH + -CH^SiMe 

•CH^SiMe^ + Me^Si- > Me^SiCNgSiMe? 

energy of 89.4 kcal/mol calculated by Walsh (99). Based on the product 

data, a kd/kc value of 1.2 was estimated. Notice that formation of the 

silene occurs via bimolecular disproportionation. 

Baldwin et used computer-aided numerical calculations to 

reinvestigate the kinetics of the thermal decomposition of trimethyl-

silane and tetramethylsilane (100). The experiments were carried out 

using the "pulsed stirred-flow" technique between 567°C and 782°C. They 

arrived at two rather long chain mechanisms in which formation of the 

silene intermediate occurs via unimolecular homolysis of either an 

methyl-silicon or a hydrogen-silicon bond (89 kcal/mol and 90 kcal/mol, 

respectively (99)). 
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Me SiCHg •> MegSl=CHg + CH^-

Me2HSiCH2 > Me2Si==CH2 + H-

MegHSiCHg- > MeHSi=CH2 + CH^ 

Disproportionation of a silyl radical generated at 800°C by homolysis 

of a silicon-allyl bond has been reported (3). Pyrolysis of 1-allyl-

pentamethyldisilane 79 gave trimethyl-l,3-disilacyclobutane 80 in 18% 

yield. 80 Was reported to have come from rearrangement of the silene 

which was formed upon disproportionation of pentamethyldisilanyl radical 

(Scheme 13). Similarly, Barton et al. showed that pyrolysis of deca-

Scheme 13 

Me 
2 
i—SiMe 3 

79 80 (18%) 

Meg 

•Si—SiMe 

81 

3 
H-CHg 

83 

Me 

Me,Si—Si, 
3 \ \\ CH 

2 

82 
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methyltetrasilane gave heptamethyltrisilanyl radical which underwent 

disproportionaticn to the silene (4). Subsequent silene to silylene 

rearrangement gave the observed product. Further discussion on the 

silene to silylene rearrangement (82 to 83 Scheme 13) will be given in 

the Results and Discussion section. 

Me,SiSiMe,SiMe„SiMe, G40°C ^ 
^ 10"^ torr 

/\ \ Me 
/Si Si^ 

Me SiMe-

f 
Me^SiSiMegSiMe-

Me /\ Me 

MeySiSiMe2Si=CH2 

Me 

/ 
** / SiMe. 
H-CHo 

Cyclization of Other Heterocentered Radicals 

Just as with silicon, intramolecular additions of other hetero-

atomic radicals have been studied much less than those cyclizations 

involving carbon radicals. Much of the work with heteroatomic free 

radicals has been done since the middle nineteen sixties. In general, 

these species are governed by the same features controlling carbon radical 
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cyclization. In this section, a brief review of the literature on alkoxyl 

and germanium radicals will be considered. Surzur has published an 

excellent review on the intramolecular addition of other heteroatomic 

radicals including sulfur, nitrogen, phosphorus, and peroxy radicals (2). 

Alkoxyl radicals 

Many of the early attempts to cyclize alkoxyl radicals failed. One 

of the main problems was the tendency of alkoxyl radicals to abstract 

allylie hydrogen (101). Also, many of the radical precursors themselves 

undergo cyclization via ionic pathways (102). 

Most of the work on intramolecular addition of alkoxyl radicals has 

been done by Surzur and coworkers (103). Several substituted nitrite 

esters were found to cyclize under photolytic conditions. Yields of 

oxime 85 were usually between 50% and 60% when run at low concentrations 

in benzene (104,105) (Scheme 14). Products derived from the six-membered 

Scheme 14 

NO 

84 NO 

R 3 

85 
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ring radical were not detected, even for = Me which gave some six-

membered ring product in the 5-hexenyl case (Scheme 4 and Table 1). 

Rieke and Moore (106,107) obtained similar results in ESR experiments on 

alkoxyl radicals generated by the identical method. All attempts to 

observe the six-membered ring cyclized product by varing the concentration 

of starting nitrile easter 84 were unsuccessful. The highest yield of 

oxime 85 (R, = R„ = R^ = H) was 68%. Neither Rieke and Moore or Clerici 
i z J 

et al. (108) were able to isolate any cyclic products using lower 

homologs of 84. 

The results on alkoxyl radical cyclization seem to parallel those 

of the all carbon 5-hexenyl radical. Thus, extending the Beckwith rules 

of radical cyclization to include simple alkoxyl radical is valid. 

There is evidence that aryloxyl radicals also cyclize in a Beckwith 

exo-fashion. For example, photolysis of substituted 2-allyphenol gave 

benzofuran 86 and chroman 87 in a 90:10 ratio (109,110). The ratio was 

found to vary only slightly with the substituent on the ring (111). 

le 

(90) : (10) 
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Germanium radicals 

Some recent work on the intramolecular addition of alkenyldimethyl-

germanium radicals has raised questions about extension of the Beckwith 

rules beyond row one radicals. Mochida and Asami (112), and Mochida and 

Miyagawa (113) have investigated the cyclization of germanium radicals 

of various chain lengths generated by free radical abstraction of the 

corresponding hydrogermane. The reactions were carried out in sealed 

tubes with benzene solvent and azobisisobutyronitrile (AIBN) or dibenzoyl 

peroxide (BPO) as iniators at 42°C or 80°C, respectively. The results 

are summarized in Table 12. The predominant direction of cyclization 

is clearly endo, which is exactly opposite that of analogous carbon 

radicals. However, this is in keeping with the studies of Ingold et al. 

(72) on silyl radicals. Mocida and Asami concluded that endo-closure is 

preferred for intramolecular addition of germanium radicals because of 

the stability of the incipient secondary radical and, to a greater 

extent, the increased carbon-germanium bond length. The longer carbon-

germanium bond distance enables the cyclization to bypass the geometric 

restraints that force the analogous carbon system to cyclize in an 

exo-fashion. 
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Table 12. Ring closure reactions of w-alkenyldimethylgermanes 

N ii® 
mmol 

(Initiator) iii® 
% Yield 

Based on consumed i^ 

2 0.007 (AIBN) 0 2.3 

0.112 (EPO) 0 17.4 

3 0.042 (AIBN) trace 70.6 

0.042 (BPO) trace 80.8 

4 0.108 (AIBN) 0.016 27.9 

0.201 (BPO) 0.051 90.3 

5 0.008 (AIBN) 0 17.8 

0.041 (BPO) 0 12.5 

Me2 

®CH2=CH(CH2)^GeH > GeMeg + (CHg) GeMBg 

'CH^ 

Me 

ii iii 
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RESULTS AND DISCUSSION 

There were two main questions that this study on alkenylsilyl radical 

intramolecular additions had hoped to address. One question was whether 

the so-called Beckwith rules could be extended to include silicon-centered 

radicals. In other words, do alkenylsilyl radicals cyclize to the kinetic 

exo-product, as is well known for carbon radicals, or do they cyclize in 

an endo-fashion? After the work reported in this dissertation was 

completed, Ingold and coworkers (72) published an ESR study that suggest 

a preference for endo-closure of silyl radicals. The other question was; 

if silyl radicals do cyclize regioselectively, will the techniques used 

to generate the radical and acquire cyclic products be synthetically 

useful? The work reported herein will answer both of these questions. 

Generation and Cyclization of Alkenylsilyl and 

Alkenyldisilanyl Radicals in Solution 

At the inception of this project, there existed only a single 

mention (in a review article) of a systematic study of "simple" alkenyl

silyl radical cyclization (71). However, those systems possessing 

aromatic rings as the alkenyl unit were known (59,60,61). Sakurai (71) 

reported that di-tert-butyl peroxide initiated intramolecular hydro-

silylation of substituted 4-pentenylsilane produced a confusing picture 

of substituent control of both regiochemistry and yield (see Historical 

section Table 9). This work has never been published in a complete form. 

Very recently, and after the work reported here was completed, Ingold, 

Davies et (72) published a report which describes an ESR study of 
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the radicals formed during photolysis of di-tert-butyl peroxide (DTBP) 

and several alkenyldimethylsilanes. No evidence for the cyclization of 

3-butenylsilyl radicals was found, and in all cases intermolecular radical 

addition was found to predominate. However, it was demonstrated that 

4-pentenylsilyl radicals strongly favored endo-cyclization over exo-

cyclization (see Historical section Table 10). Since in only one case 

were products actually isolated and identified, the findings reported 

in this section will be complementary and supportive of the conclusions 

of Ingold and coworkers with regard to pentenylsilyl radical cyclizations 

and will present a new picture of butenylsilyl radical intramolecular 

reactions. Also, to be reported in this section is a new picture of 

cyclopropyldimethylsilyl radical (58) and allyldimethylsilyl radical. 

The abstraction of a silyl hydride by a tert-butoxy radical, 

generated thermally from DTBP, was used to prepare the alkenylsilyl 

radicals in solution. The reactions were carried out in degassed sealed 

pyrex ampoules with either benzene or tert-butylbenzene as the solvent. 

No effect of solvent change was noted. 

In order to provide a close comparison with the classic 5-hexenyl 

radical, hydrogen abstraction from the analogous silyl hydride 64 was 

effected. 4-Pentenyldimethylsilane 64 (114) was prepared by Grignard 

coupling of 4-pentenylmagnesium bromide and dimethylchlorosilane in 70% 

Me 
2 

MgBr + ClSlMe^H 

64 
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yield. Heating a 1% solution of 64 and DTBP (2:1) in benzene at 145°C 

for 4 hours afforded a product mixture which contained, in addition 

to 48% unreacted 64, a 19% yield (GC) of a sole, major volatile product, 

1,1-dimethyl-l-silacyclohexane 90 (114,115). Compound 90 was isolated 

pure by preparative GC, and its spectral properties matched with those 

of an authentic sample of 90. Therefore, it appears that under these 

conditions radical 88 undergoes cyclization in an endo-fashion. Careful 

examination of the product mixture by GC-mass spectra (GCMS) revealed 

no significant products isomeric with the major product. 

O' SiMeJH 
DTBP. 

145°" 

endo ^ \iMe. 

64 88 89 

SlMe. 
^ SiMe. 

90 (19%) 

Although the endo-cyclization of 88 is an apparent violation of the 

Beckwith rules, caution must be exercised in interpretation of this result 

as it is possible that initially formed exo-radical 91 rearranges to endo-

radical 89. Such a rearrangement seems unlikely since radical 89 (and 

not 91) has been identified as arising from 64 in the ESR studies of 
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Ingold and coworkers (72). Therefore, it is reasonable to assume that 

endo-cyclization of 88 has occurred in a dramatic reversal from the 

behavior of the analogous carbon-centered radical. 

A similar procedure was used to examine the next lower homology. 

Thus, when 3-butenyldimethylsilane 59 (114) was heated at 145°C in the 

presence of DTBP for 12 hours, only one major volatile product was 

isolated by preparative GC along with 9% of unreacted 59. The compound 

was identified as 1,1-dimethylsilacyclopentane 95 (114,115) which was 

present in 18% yield by GC. The spectra of 95 exactly matched that of 

an authentic sample prepared by magnesium-induced coupling of 1,4-di-

bromobutane and dimethyldichlorosilane. The GCMS data revealed no other 

isomeric products. Therefore, in contrast to Ingold and coworkers (72), 

who saw no evidence of intramolecular reaction of radical 92, it appears 

that under the reaction condition reported here, 59 not only cyclizes, 

but does so in an endo-fashion. One must again exercise caution in 

interpreting this result due to the possibility of rearrangement of exo-

radical 93 to endo-radical 94. Unfortunately, there seems to be no 

definitive results on the cyclization of 4-pentenyl radicals in the 

literature for comparison of 59 with the carbon analog (see Historical 

section on 4-pentenyl radicals). 

Several attempts to observe cyclic products of allyldimethylsilyl 

radical 96 failed. Based on GCMS data, the only product formed when 

a solution of allyldimethylsilane 60 and DTBP (2:1) in tert-butylbenzene 

or diglyme was heated up to 24 hours had a molecular weight equal to 
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r \—si SiH 
Me„ 

59 

DTBP -
145°C'' 
t-BuPh 

r. 
SiMe^ 

92 

ex 
SiMe^ 

93 

O'-Q ^Si 
Me. Meg 

95 (18%) 

twice that of 60. Such a compound can be accounted for by intermolecular 

attack of the radical 96 on 60 followed by hydrogen abstraction. Ingold 

and coworkers (72) observed this type of intermolecular addition in their 

ESR studies (see Historical section Table 10). The dimer product of 60 

was never present in high enough yield to make isolation possible. When 

the reaction was carried out in o-dichlorobenzene as the solvent, allyl-

dimethylchlorosilane 98 was one of the major products along with chloro-

benzene as evidenced by GCMS. Since it is well-known that silicon-

centered radicals abstract halogens from haloaromatic compounds (30), 

this is taken as evidence for having formed radical 96. 
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,S1H 

60 

98 

DTBP . 
1A5°C 
1-24 hr 

îlMer 

96 ^6^6 
or 

• Diglyme 

H-abstr. 

99 (GCMS) 

The apparent reluctance of radical 96 to cyclize is similar to 

that which is known for the 3-butenyl carbon radical. In other words, 

observation of cycllzed products from the 3-butenyl radical 33 is not 

possible due to the facile 3-cleavage of the cyclopropyl carbinyl 

radical 32. Therefore, analogous cyclization of silyl radical 96, k^, 

may be much slower than the reverse 3-cleavage, k ^. 

Alternatively, allyldimethylsilyl radical 96 could cyclize to 

silacyclobutyl radical 100. In fact, endo-closure of 96 should be the 

preferred mode of cyclization. On the other hand, if exo-cyclization 
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. ^1.3X10° SÇÇ-L ^ 

100 

were to occur and k_ is faster than k ,, then a-silyl radical 102 would 
Z -1 

be formed by cleavage of the weaker carbon-carbon bond (99,116). The 

absence of trimethylvinylsilane (GCMS analysis) suggests that 102 was 

not formed. However, the absence of trimethylvinylsilane is not 

conclusive evidence since Wilt's (73) work would support cycllzation of 

102 to silacyclobutyl radical 100. Careful examination of the GCMS data 

revealed no silacyclobutyl products or dimer of allyldimethylsilyl radical 

96. To better address the issue, radical 102 was independently generated. 

Thus, when a benzene or pentane solution of chloromethyldimethylvinyl-

silane (1.2% w/w) was photolyzed (rayonet, 253 nm) in the presence of 

trl-n-butylstannane (TBTH) and AIBN initiator, NMR showed quantitative 
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Me. Me. 

rSiCH Cl 
TBTH 
AlBN 

253 nm 

> ^Si—. 

. i 
102 

exol// 

Me_ ̂  
endo 

101 

'SiMe-

100% (NMR) 

• 
100 

SiMe, 

conversion to trimethylvinylsilane. Therefore, at least under the 

conditions reported here, hydrogen abstraction is much more competitive 

than endo- or exo-closure. This tends to suggest that radical 102 was 

not formed in the peroxide decomposition of silane 60. 

The absence of a radical dimer was puzzling since similar dimers 

have been reported in the literature. For example, Sakurai and coworkers 

(58) found that cyclopropylsilyl radical 71, generated by hydrogen 

abstraction with tert-butyl peroxide at lAO^C, dimerizes in good yield. 

No evidence for g-cleavage to 72 was reported for what is apparently a 

very stable radical. Having found that allyldimethylsilyl radical did 

Me^ Me. 

70 71 72 
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not dimerize under almost identical conditions lead to a reinvestigation 

of the cyclopropyldimethylsilyl radical 71. 

Cyclopropyldimethylsilane 103 was prepared in 79% yield by addition 

of dimethylchlorosilane to a solution of cyclopropyllithium in ether 

(117). The reaction of 103 was then carried out as described for allyl-

dimethylsilane 60 using DTBP initiator in tert-butylbenzene solvent. 

The only product that could be identified by GCMS other than unreacted 

103 had a molecular weight equal to twice that of 103. There was no 

product present that had a molecular weight equal to radical dimer 70. 

Although the conditions used are almost identical, the results presented 

here do not support those previously published by Sakurai ̂  (58). 

ClSiMe^H + 

103 [79%] 

DTBP 
145°C t-BuPh 

M 

70 71 72 

\ f  

"103 Dimer" 
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However, like Sakurai et , there was no evidence of having formed 

silene radical 72. 

Wilt has demonstrated that substitution by a silyl group a to the 

radical center significantly alters the preferred mode of cyclization 

(73) (see Historical section on silicon radical cyclization). Thus, 

a-silyl radical 68 was found to give predominantly endo-cyclized product 

90 which is opposite to that of the well studied 3-hexenyl radical (exo-

CH 

T/ —- A 
SiMeg \_SiMe^ 

68 104 (5%) 90 (11%) 

mode). Wilt's results, coupled with those already presented in this 

section, created an interest in the chemistry of a-silasilyl radicals. 

Therefore, a systematic study on the intramolecular cyclization of 

disilanyl radicals was undertaken. 

Analog extension of the 5-hexenyl system to a disilanyl radical 

was accomplished by synthesis of 62 via magnesium-induced coupling of 

l,2-dichloro-l,l,2,2-i:etramethyldisilane and 4-bromo-l-butene followed 

by lithium aluminum hydride (LiAlH^) reduction. After heating a 1% 

benzene solution of 62 with DTBP for 1 hour at 145°C, only 11% of 62 

remained. The sole major volatile product (23%) was isolated by 

preparative CG and spectrally identified as l,l,2,2-tetramethyl-l,2-di-

silacyclohexane 107 (118). Thus, substitution of a second silicon in the 

radical chain does not deter the cyclization of 105 from an endo-pathway. 
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•Q 
Meg Meg 

107 (23%) 

Ingold and coworkers (72) recently reported that disilanyl radical 

105 gave no ESR evidence for intramolecular reaction (see Historical 

section Table 10). However, the results presented here clearly 

demonstrate that cyclization occurs and does so in an endo-fashion. 

To check the spectral assignment of 107, an authentic sample was prepared 

by magnesium-induced coupling of l,2~dichloro-l,l,2,2-tetramethyldisilane 

and 1,4-dibromobutane. All of the spectral properties and GC retention 

times exactly matched. 

The radical produced from hydrogen abstraction from allyldisilanyl 

hydride 61 was also reported (72) to provide no ESR evidence for intra

molecular cyclization. However, heating a 1% solution of 61 in benzene 

at 145°C for 1 hour afforded a product mixture which contained, in 

addition to 14% unreacted 61, a 13% yield (GC) of a sole, major volatile 

product, l,l,2,2-tetramethyl-l,2-disilacyclopentane 110 (118). Thus, 

the lower homologous disilanyl radical also undergoes apparent predominant 

or exclusive intramolecular it-addition in an endo-sense. The formation 

of endo-radical 109 may be simply another manifestation of the well-known 
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Si— SiH 
Me^ Meg 

61 

DTBR endo 

Si__Si 
Me 

77 

Me^ Me^ 
û 
Me^ Meg 

exo^ 
109 

'T: SiMCg iMe„ 
108 

)1_S1 
Meg Meg 

110 (13%) 

stability of 3-silyl radicals as 109 possesses two g-silyl substituents. 

Even so, the net result is thermodynamic rather than kinetic control over 

cyclization. 

Vinyldisilanyl hydride 111 failed to undergo intramolecular hydro-

silylation when treated with DTBP in tert-butylbenzene and heated at 

145°C for 1 hour. The only volatile product that could be identified 

by GCMS had a molecular weight equal to twice that of 111. Therefore, 

it seems reasonable to assume that radical 112, like 96 and 71, underwent 

intermolecular addition to starting hydride 111 followed by hydrogen 

abstraction. The "111 dimer" was not present in high enough yield to be 

isolated. 

r 
Meg Meg 

Si—SiH 

111 

DTBP 
145°C " 
t-BuPh 
1 hr 

Me„ Me-

^Si—Si 
(I • 

112 

"111 Dimer" 
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To further explore the effect of heterosubstitution at the a-

position, butenyloxydimethylsilane 113 (119) was prepared in 80% yield 

by the reaction of 4-butenyl alcohol and dimethylchlorosilane with an 

added equivalent of pyridine. All of 113 was reacted after 1 hour at 

145°C in the presence of DTBP, and the only major volatile product was 

found to be 2,2-dimethyl-2-silaoxacyclohexane 115 (120,121) formed in 

"OH + ClSiMegH ^^2° ^ 

113 (80%) 

t-BuPh 
1 hr 

115 (24%) 

24% yield. This clearly demonstrates that substitution with oxygen at 

the a-position does not deter the preferred endo-mode of cyclization 

of silicon radicals. 

Unfortunately, attempts to establish the generality of alkenyloxy-

silyl radical intramolecular addition by examining the next lower homolog 

failed. When allyloxydimethylsilane 116 (122) was treated with DTBP 

and heated at 145°C for various time periods, no significant amount of 
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cyclic products were ever observed. By GCMS a trace (<1%) of a compound 

having a molecular weight equal to that of 117 (70,121,122) was present. 

However, optimization of the yield of this product was not possible and 

therefore, one hesitates to draw any conclusion. 

,OSiMe-H DTBP 

Me^ 

1450c 

116 117 

v_y 

117 
(no^~observed) 

The results presented in this section coupled with those of Ingold 

and coworkers (72), as well as those of Mochida and Miyagawa (113) for the 

analogous cyclizations of alkenyldimethylgermyl radicals, make it 

abundantly clear that the extension of the Beckwith rules for hemolytic 

ring closure cannot be extended beneath carbon in Group IV. Since the 

reasons for the contrathermodynamic behavior of the carbon^centered 

radicals are not totally clear (2), it is not possible to pinpoint the 

origins of the changeover in behavior with certainty. Certainly, the 

most obvious and most likely responsible differences are the increased 

chain length due to the longer bonds to silicon (both in the chain and 

for the incipient silicon-carbon bond in the activated complex), and the 

pyramidal configuration of silicon radicals (71) as opposed to the planar 

configuration of carbon radicals. 
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Examination of the orbital picture of the transition state geometry 

leading to product provides a rationale for the changeover in the regio-

chemistry of silyl radical cyclizations, Beckwith and coworkers (1,16) 

proposed that cyclization of 5-hexenyl radical gave the kinetic By

product because the carbon radical could not properly align with the 

terminal p-orbital of the n-system (see Historical section on the Beckwith 

rules). In other words, the initial bonding interaction in carbon 

radical cyclizations must involve structure IV (Scheme 15). However, 

with silicon radicals, structure V is much easier to achieve because 

of the longer silicon-carbon bond. Therefore, the thermodynamic endo-

mode is preferred. A transition state geometry analogous to V should be 

favored even more in the case of disilanyl radicals which are now shown 

to cyclize in a thermodynamic endo-fashion. Also, the pyramidal nature 

of the silicon radicals aids in relief of some of the intervening steric 

factors that may effect the regiochemistry. The possible role of these 

stereoelectronic factors has also been discussed by Ingold and coworkers 

(72) and have been used to explain the results of Wilt's (73) study on 

a-silyl radical intramolecular additions. 

Having found abstraction of a silyl hydride by another radical to 

be a good method of generating silicon radicals, the use of radical 

initiators other than DTBP was examined. Both di-benzoyl peroxide (BP) 

and azobisiosobutyronitrile (AIBN) were tried. Only in the case of 

butenyloxydimethylsilane 113 with BP was any evidence of cyclization 
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Hill 

IV 

VI 

III 
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obtained. Thus, when a solution of 113 and BP (A.3:1) in o-dichloro-

benzene was heated at 110°C for 3j hours, NMR showed two multiplets 

(6 0.55 and 6 1.20-1.90) and a new singlet in the silicon-methyl region 

(6 ca. 05) which were similar to those found for 2,2-dimethyl-2-silaoxa-

cyclohexane 115. The ratio of 113 to 115 was approximately 5:1. All 

other attempts to use BP at 110°C and AIBN at 45°C failed. 

In summary, intramolecular addition of alkenylsilyl and alkenyl-

disilanyl radicals proceeds in a regiospecific endo-fashion when generated 

by hydrogen abstraction from the corresponding silane with tert-butoxy 

radical. The preference for endo-closure is also observed for alkenyloxy-

silyl radicals. These results are opposite those which are known for the 

well studied analogous carbon-centered radicals. Therefore, the Beckwith 

rules (1) can not be extended to include silyl radicals when generated 

under these conditions, Silyl radicals having total chain lengths of 

four atom units were found not to cyclize nor dimerize. Instead, these 

radicals appear to undergo intermolecular addition followed by hydrogen 

abstraction. 

The average yield of cyclic product was approximately 20% based on 

reacted starting material. The relatively low yields are most likely 

due to competition between intramolecular and intermolecular reactions. 

Therefore, this technique as a route to silacyclic compounds does not 

rival the existing methods. Carrying out the experiments at infinite 

dilution should theoretically increase the yield of intramolecular 

cyclization. However, this would also greatly decrease the synthetic 

utility. 
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Gas Phase Generation and Reactions of Silicon Radicals 

There are few good thermal silicon radical generators. However, 

hexamethyldisilane has been shown to decompose to trimethylsilyl radical 

at 6G0°C via hemolysis of the silicon-silicon bond (56). The reaction 

affords l,l,3,3-tetramethyl-l,3-disilacyclobutane 118 and 119 (123) as the 

major products. A complex bimolecular mechanism, which was found to be 

pressure dependent, was written to account for the observed products 

(124,125,126,127). The complex behavior of this reaction has limited 

its worth as a silyl radical generator. 

600°C^ > 
Me,Si—SiMe, ^ 2 Me^Si* 3 3 3 

Me_Si SiMe_ 

118 

+ 

Me^SiCHgSiMegH 

119 

Allylsilanes have also been reported to give silyl radicals under 

pyrolytic conditions. For example, trimethylallylsilane 120 gave tri

methylsilyl radical when pyrolyzed in a stirred-flow system between 580° 

and 730°C (75). The trimethylsilyl radical was reported to then undergo 

bimolecular disproportionation to dimethylsilene 121 which dimerized in a 

head-to-tail fashion affording 118 (Scheme 16, path a). Since the 
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Scheme 16 

SiMe. 

120 

• V 
+ Me^Si< -H- MSgSlszCHg 

121 

Me.SiO^ 
+ MegSissCHg 

120 121 118 

activation energy (73 kcal/mole) was found to be very close to the 

calculated silicon-allyl bond dissociation energy, these authors 

concluded that the concerted retroene elimination (path b) was a minor 

process (75). 

Recently, however. Barton and coworkers (128) have reinvestigated 

the gas-phase thermal decomposition of allyltrimethylsilane using 

deuterium labeling and kinetic studies of variable pressure. Although 

hemolysis of the silicon-allyl bond (path a) does occur at high pressure, 

the main primary mode of unimolecular decomposition for allyltrimethyl

silane when pyrolysed at low pressure is via .a concerted retroene 

elimination of propene (path b). An activation energy of 55 kcal/mol 

was obtained for the concerted process which is approximately 18 kcal/mol 

less than the silicon-allyl bond dissociation energy. 
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Several examples of retroene eliminations of allylsilanes possessing 

a-methylene groups have been published. Some examples are summarized 

below. The facile concerted retroene elimination of propene from allyl-

reference 

129 

130 

131 

132 

silanes has perhaps limited the use of these compounds as generators of 

silicon radicals in the gas phase. 

Much of the work reported in this section was stimulated by a 

report by Barton and Jacobi (3) on the gas phase generation of allyl-

tetramethyldisilanyl radical 77. They found that vacuum-flow pyrolysis 

of l,2-diallyl-l,l,2,2-tetramethyldisilane 76 cleanly afforded 1,1,3,3-

tetramethyl-l,3_disilacyclopentene 78 in 51% yield. In order to 

rationalize the formation of product 78, these authors offered the 

mechanism outlined in Scheme 17. The first step involved formation of 

disilanyl radical 77 by hemolytic cleavage of the silicon-allyl bond. 

Examples 

Si / 
pj] 

122 

710"C 

+ MSgSi; 

450°C 

123 

CH + 

800 °C Me 

0 
I 
CH, 

>=o 
124 

820OC 

125 I 
CH^ + /A I-ch, 
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It was proposed that 77 underwent exo-closure to afford 126, in keeping 

with the Beckwith rules, and not endo-closure to 109 since no products 

of this ring system were found. Exo-cyclized radical 126 could 

conceivably go on to 78 via cleavage of the carbon-carbon bond (path B) 

or by silicon-silicon bond hemolysis (path A) followed by combination 

with the carbon-centered radical and subsequent rearrangement. 

Scheme 17 

Me Me Me„ Me„ 

siisi? ^ ,siisi' v . 

76 
c ̂  o 

0 
77 109 

SiMe, 

Me, 
2 

127 

Me, 

Si 

<J 
Si 
Me 
2 

78 

-H-

Me„Sij3iMe„ 

126 

Me, 

CI 
Me, 

-> Me„Si-SiMe, 

128 

Me^ 

Q 
Me2 
129 
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Although the reaction conditions are quite different, the results 

presented in the previous section of this dissertation on the generation 

and cyclization of radical 77 (sealed tube, 145°C, DTBP in benzene), 

coupled with the ESR studies of Ingold, Davies and coworkers (72), suggest 

that endo-closure to 109 should be favored over the exo-mode. Therefore, 

a reinvestigation of the thermal decomposition of 1,2-diallyl-l,1,2,2-

tetramethyldisilane 76 was undertaken. The pyrolytic behavior of some 

other allylsilanes was also examined. 

In order to establish the correctness of the product composition, 

the pyrolysis of 76 was repeated under similar reaction conditions as 

those reported by Barton and Jacob! (3). Thus, when 76 was slowly 

distilled through a quartz tube heated to 8A0°C under vacuum (1 X 10~^ mm 

Hg), only one major product was formed. The compound was Isolated by 

fractional distillation and identified as 78. The yield of 78 was 60%. 

The clean formation of rearranged 1,3-disilacyclic 78 is consistant 

with the previous report (2). 

f ̂e Si-Si^e \ 

I ^ ) 
(not observed) 

Two of the key steps in the previously reported mechanism, outlined 

in Scheme 17, involved either rearrangement of 128 to 129 or rearrangement 

of 126 to 127. Both pathways would require cleavage of a silicon-silicon 

bond (bond dissociation energy approximately 80 kcal/mole (99)). If 

Me Me 

Si—Si 

76 

840°C _ 
.-4 . > 
10 torr 

Me-Si SiMe^ 
\=y 

78 
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either of these rearrangements were somehow circumvented, observation of 

the first formed cyclic intermediate might be possible. A likely 

candidate for this might be the analogous disiloxanyl radical 1_31. The 

./Qv H "'2 "'2 Me Sr--0 

\ / ^ yj SlMGg 

130 131 * 132 

rational behind this choice is that in order for a rearrangement analogous 

to that described by Barton and Jacob! (3) (Scheme 17) to occur, cleavage 

of a very strong silicon-oxygen bond (bond dissociation energy 

approximately 128 kcal/mole (99)) must take place. Such a cleavage is 

very unlikely. Therefore, one might expect to obtain products directly 

derivable from the ring system of exo-radical 132 or the endo-closure 

radical 130. 

Cleavage of an silicon-allyl bond was chosen as a possible method 

of generating radical 131 in the gas phase. Thus, l-allyl-3-vinyl-l,l,-

3,3-tetramethyldisiloxane 133 (133) was prepared in 28% yield (yield 

not optimized) by sequential addition of vinyllithium and allylmagnesium 

bromide to a solution of l,3-dichloro-l,l,3,3-tetramethyldisiloxane. 

Upon pyrolysis of 133, two major products were formed. They were 

identified based on their spectral characteristics as 3,3,5,5-tetra-
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methyl-3,5-disila-A-oxycyclopentene 13A and A,4,6,6-tetramethyl-4,6-dl-

sila-5-oxycyclohexene 135 in 18% and 15% yield, respectively. The 

yields are based on 66% reacted 133. Clearly no rearrangement has 

8A0°C ^ 

10" torr 

133 

Me_Si SiMe. 
2 \=J ' 

134 (18%) 135 (15%) 

occurred in this reaction. The mechanism which is believed to best 

account for the observed products is given in Scheme 18. Initial 

hemolysis of the silicon-allyl bond would afford vinyldisiloxy radical 

131. Endo-cyclization, "anti-Beckwith" mode, of 131 followed by loss of 

hydrogen would give 134. Likewise, 135 is most reasonably explained by 

endo-cyclization of radical 137. The formal lose of a vinyl group must 

have occured by a bimolecular process involving attack of 131 on 133 to 

form a radical adduct which could undergo cleavage to 137 and 1,3-di-

vinyl-l,l,3,3-tetramethyldisilane 138. The absence of products having 

either the 132 or the 139 ring system suggest that exo-closure did not 

take place. However, cyclization to an exo-radical cannot be ruled out 

since either the radical or its products may not be stable under the 

reaction conditions. While this may be true for 1,3-disiloxatane 132 

(134), exo-radical 139 should yield a stable product. No significant 

amount of products were observed for either of these ring systems. 
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Scheme 18 

Part A 

Me Me. 

r 
2  ' ~ 2  

Si—0—sr-

Me Me. 

133 

Me„Si SiMe 

134 

r 

1 

2 ~2 
i—0—Si 

131 

Me„Si SiMe„ 
'\_y ' 

130 

Me„ 

Si -0 

li 
Me. 

U_L L 

132 

Part B 

r 
Me^ Me^ 

Si_0_si 133 

131 

Me^ Meg Meg Me^ 

Si_o—Siv. t^Si—0—Si, r T 
I 

Me.sf \iMe r-endo Me_fi^~"^SiMe_ ^Si—0—S 

\J * fl 
Meg MP 

Me„sf °~5iMe_ 

135 

exoj^ 137 138 

Me.Si siMe_ 

• 139 
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Even though it is possible that the exo-radicals may have rearranged to 

endo-radicals, the net result is formation of the thermodynamic rather 

than the kinetic cyclic products. 

l,3-Divinyl-l,l,3,3-tetramethyldisilane 138, though proposed to be 

formed in the pyrolysis of 133 via the mechanism shown in Scheme 18 (part 

B), was absent from the reaction mixture. This is not too surprising 

since either of the radicals formed under these conditions could initiate 

bimolecular cleavage of one of the vinyl groups, analogous to that 

which gives 137, to afford radical 131. However, a pure sample of 

138 (Petrarch) is stable up to 840°C in a vacuum (1 X 10"^ mm Hg). 

In order to establish that compound 135 was formed from cyclization 

of radical 137 (formally a vinyl loss), the pyrolysis of l,3-diallyl-l,l-

3,3-tetramethyldisiloxane 140 (135) was carried out under the same 

conditions (840°C, 1 X 10~^ mm Hg). As predicted, 135 was formed as the 

major product in 20% yield based on 74% reacted 140. Also present in the 

product mixture was a 16% yield of 134. The mechanism given in Scheme 19 

for the formation of 135 and 134 supports the contention that silyl 

radicals generated in the gas phase cyclize in an endo-fashion affording 

the thermodynamic product. Most likely, 134 was formed by intermolecular 

attack of radical 137 on the ir-bond of 140 to give a radical adduct 

which upon cleavage would give 133 and a-silyl radical 141. Similar 

a-silyl radicals have been shown by Wilt (73) to undergo intramolecular 
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Scheme 19 

Me Me. 
2 

•Si—0—— 

140 

Me Me 
840°C W. \ 

i/<vX 

10" ton Me 
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-H" 

Me^Si ^iMe^ / I # z 
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cyclization in solution (see Historical section on Silicon Radical 

Cyclizations). No products having a ring system or a CyH^SigO 

molecular formula that might be derivable from 141 could be found in the 

GCMS. Thermally generated a-silyl radicals will be discussed in the 

next section. 

Based on the above examples, homolytic cleavage of the silicon-

allyl bond of disiloxanes is a good method of generating a silyl radical 

in the gas phase. The cyclic products derived from these radicals are 

most reasonably explained by endo-closure followed by disproportionation. 

One must, therefore, conclude that silyl radicals in the gas phase also 

do not follow the Beckwith rules. If this is correct, the reported 

exo-cyclization of allyltetramethyldisilanyl radical 77 under pyrolytic 

conditions (3) is even more puzzling, especially when one might expect 

that the high temperatures used would favor thermodynamic rather than 

kinetic control (136). 

To further explore the thermal behavior of allyldisilanes, 2-(3-

butenyl)-l-allyl-l,l,2,2-tetramethyldisilane 142 was prepared by 

sequential magnesium-induced coupling of 4-bromo-l-butene and allyl 

bromide with l,2-dichloro-l,l,2,2-tetramethyldisilane. Upon pyrolysis of 

142 at 760°C in a vacuum (1 X 10"^ mm Hg), four major products were 

isolable by preparative GC. Based on their spectral properties, the 

compounds were identified as l,l,3,3-tetramethyl-l,3-disilacyclohexene 

143 (137), 78 (3), l,l,3-trimethyl-l,3-disilacyclopentene 144, and 
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l,l,3,3,5-pentamethyl-l,3-disilacyclopentene 145. The yields of these 

products are given below based on 78% decomposition of 142. Although 

760°C ^ 
— ^ 

10" torr 

142 

Me^Si SiMe_ 

143 (26%) 

. Me2S^i_SlMe2 

78 (27%) 144 (8%) 145 (4%) Me 

these products may be rationalized as having formed via silyl radical 

cyclization followed by rearrangement (similar to that published for the 

conversion of 76 to 78 in Scheme 17) such a mechanism now seems 

unlikely. It is particularly unlikely that the contrathermodynamic 

exo-closure would be an important step in the transformation. An 

alternative route to these 1,3-disilacyclics is given in Schemes 20, 22, 

and 23. 

It is proposed that butenyldisilanyl radical 105 is formed by 

hemolysis of the silicon-allyl bond (Scheme 20). However, instead of 

undergoing intramolecular addition to the n-bond, 105 disproportionates 
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Scheme 20 

-Si Si 
Me^ Me^ 

142 

V 

Me„ Me 

Si-li 
•^CH 

105 

Me^ ̂  

O" 
146 not 
observed Me-Si SiMe„"<-

143 

Me„ Me 

.SI— 

142 

Si—Si Me 

Il —^ Si SiMe^ 

CH. 

147 
148 

Me 
SiMe. 

150 

Me 

Si^'^iMe. 

149 

to the silene 147. Silene 147 could then undergo a 1,2-silyl shift 

(3,4) affording silylene 148 which upon intramolecular ir-insertion 

would give the bicyclic disilane 149. Cleavage of the weaker carbon-

carbon bond of the silacyclopropane ring followed by hydrogen migration 

in biradical 150 affords 143. Since each of the steps in Scheme 20 has 

literature precedence (vida infra), this mechanism seems most reasonable. 
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With the available data, it is not possible to differentiate between 

a stepwise or concerted retroene process. Based on the recent work 

of Barton and coworkers (128), the concerted elimination of propene 

from allylsilanes is an important mode of decomposition. 

Disproportionation of disilanyl radicals to form silenes that undergo 

silene to silylene rearrangement is not an uncommon phenomenon when the 

radicals are generated under pyrolytic conditions. For example, Barton 

and Jacob! demonstrated that 80 was formed in 18% yield from 79 (3) via 

a similar mechanism. A direct retroene elimination to silene 82 from 79 

Me /\ 
,Si SiMe-
H' 2 

80 (18%) CH 

Me^Si-SiMe, '2 
82 83 

was not ruled out in this study. Barton and coworkers have published 

other examples of silene to silylene rearrangement (4,138,139). 

n o r  

RAQor • 
Me,SiSiMe„SiMe„SiMe, % > Me^SiSiMe SiMe, 
3 2 2 3 10-4 torr ^ ^ 

Me SiMe \/\/ 
Si Si 

h/ ̂  

(23%) 

Me .SiMe, 

- Si^ 'Si < O 

••  cC-

-H-

Me 

Me^SiSi—Si—CH. 
3 Men 
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Intramolecular insertion of silylenes into ir-bonds is not without 

literature precedent. Recently, Barton and Burns (140) reported that 

flash-vacuum pyrolysis generated allylmethylsilylene 151 and methyl-1-

(2,4-hexadienyl)silylene 153 isomerized to the corresponding hydrido 

silacyclics in good yields (Scheme 21). They suggested that this occurred 

via initial intramolecular -rr-addition to form silacyclopropyl intermediates 

followed by hemolysis of the internal silicon-carbon bond and hydrogen 

migration. In the case of 153, some product was also observed that would 

come from hemolysis of the external silicon-carbon bond, e.g. 155. 

Substitution by a methyl group on the hexadlene moiety as in 156 altered 

the expected mode of cleavage and gave a product, 157, which was reported 

to have been formed by cleavage of the weaker carbon-carbon bond (99). 

Interestingly, none of the intramolecular n-addition product 159 was 

observed for the simpler 3-butenylmethylsilylene 158. The mechanism 

that was invoked to account for 56% yield of 160 was initial silylene 

insertion into an allylic hydrogen to form an intermediate vinylsila-

cyclopropane which could undergo a 1,3-silyl migration. All of the 

silylenes were generated at 680°C in a vacuum (1 X 10"^ mm Hg) by 

a-elimination of trimethylmethoxysilane from the corresponding methoxy-

disilanes. 

Silene to silylene rearrangement followed by ir-insertion, not exo-

cyclization of the disilanyl radical, is offered as an alternative 

mechanism for the formation of 78 from 76. Thus, retroene elimination 
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Scheme 21 
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of propene from 76 would give silene 161 which after a 1,2-silyl shift 

followed by ir-insertion of silylene 162 affords silacyclopropyl compound 

163 (Scheme 22). Cleavage of the weaker carbon-carbon bond of 163 

followed by hydrogen migration gives product 78. Although the radical 

cyclization mechanism proposed by Barton and Jacobi (3) (Scheme 17) is 

reasonable, the results presented here, not to mention the cleanliness 

of the reaction, suggest otherwise. However, based on product analysis, 

it is not possible to differentiate between a stepwise (path a) and a 

concerted (path b) retroene process. 

It is interesting to find that 78 is also formed in the pyrolysis 

of the butenyldisilane 142. To account for this observation, a bi-

molecular route to the 1,2-diallyldisilane 76 which cleanly gives 78 

is invoked (Scheme 23). The mechanism starts with the hemolysis of the 

carbon-allyl bond of the butenyl group of 142 to form the a-silyl radical 

165. Evidence for this type cleavage is forthcoming. Intermolecular 

addition of 165 to the -n-bond of 142 would give radical adduct 166 which 

could decompose to the observed products by two pathways. g-Cleavage 

of 166 (path a) would give 76 which decomposes to 78 via the mechanism 

outlined in Scheme 22. It is conceivable that unimolecular homolysis 

of the butenyl group followed by disproportionation of the resulting 

silyl radical could also give silene intermediate 161 which rearranges 

to product. However, based on some work done on the thermal behavior 

of 3-butenylsilanes, this type cleavage is believed to be less important. 

The work on 3-butenylsilanes will be presented in the next section. 
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Scheme 22 
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Scheme 23 
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Path b Is offered as a possible route to 145. Thus, 1,2-hydrogen 

migration in radical adduct 169 followed by 3-cleavage affords 170. 

Retroene elimination to propene and silene 171 followed by a 1,2-silyl 

shift, TT-insertion, carbon-carbon bond hemolysis of the intermediate 

silacyclopropane, and hydrogen migration would give the minor product 145. 

3-Disilanyl radical 167, the other fragmentation product of path 

a in Scheme 23, is believed to lead to l,l,3-trimethyl-l,3-disilacyclo-

pentene 144 via 168. In order to check this possibility, l-allyl-2-

vinyl-l,l,2,2-tetramethyldisilane 168 (141) was independently synthesized 

and pyrolyzed under the same conditions; namely 760°C at 1 X ICT^ mm Hg. 

Analysis of the pyrolysate showed a complex mixture of products with a 

mass recovery of 77%. The major volatile products and the corresponding 

yields are shown below. Although one hesitates to make strong mechanistic 

conclusions based on such a low yield process, the presence of 144 in 

the product mixture is at least in keeping with retroene elimination 

from 168 followed by silene to silylene rearrangement on to product 

144. Note, however, that cleavage of the internal silicon-carbon bond 

of the silacyclopropyl ring in 173 occurs. Although silicon-carbon bond 

rupture is the usual expectation for a monocyclic silacyclopropane 

(124), there is literature precedent for carbon-carbon bond cleavage 

as well. Carbon-carbon bond hemolysis has been invoked to explain the 

products obtained from ring-expansion reactions between silylenes and 

cyclic dienes such as cyclopentadlene (142), 1,3-cyclooctadiene (143), 

and furans (144). 
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r 
Me^ Me^ 

Si—5i 760°C 

10 ̂  ton 

168 

Me, 6 Me, 2 + 

78 (3%) 
r 

Mer 

Sis 

172 (1%) 

Me^ 

"~^i—Me 

/ 

^i SiMe. 
\̂c=J  ̂

144 (5%) 

"5.,-A Si SiMe. 
-2 

173 

Formation of vinylallyldimethylsilane 172 (1%) most likely occur 

by reductive-elimination of dimethylsilylene. However, a radical process 

is also possible. Examination of the GC trace at column temperatures 

between 200°-230°C (15 ft., 20% OV-lOl/Chromosorb W) revealed a very 

complex mixture of high molecular weight products. None were isolable. 

1,3-Disilacyclopentene 78, the only other volatile product, was 

rationalized as having been formed via allyldisilanyl radical 77 which 

disproportionates to silene 161 (see Scheme 22). What amounts to 

formally a loss of ethylene must occur through radical initiated cleavage 

of the vinyl group from 168. Therefore, stepwise silene formation is 

believed to be just as important as the concerted retroene process. 
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Evidence that suggests that simple hemolytic cleavage of the vinyl group 

does not take place was obtained when both trimethylvinylsilane and 

divinyldimethylsilane were pyrolyzed under the identical conditions 

(760°C, 1 X iCT^ mm Hg). In both cases, quantitative recovery of starting 

material was obtained. Also, to demonstrate that radical-initiated 

Me Si 

^ ^ > Me^Si" 
Me^ 

fT " II 
cleavage of the vinyl group is possible, l,2-divinyl-l,l,2,2-tetramethyl-

disilane 174 was pyrolyzed. At 760°C, homolysis of the silicon-silicon 

bond should occur (56) and furnish a radical source for the propagation 

step. As predicted, the pyrolysis of 174 afforded a 84% mass recovery 

of pyrolysate that contained a 5% yield of 144. Also present in the 

complex mixture was vinyldimethylsilane (6%), dimethyldivinylsilane 

(11%), and an unexplainable 5% yield of trimethylvinylsilane. The 

yields are based on 35% recovered 174. The major components of the 

pyrolysis were non-volatile compounds as evidenced by GC analysis on 

a 15 ft., 20% OV-lOl/Chromosorb W column between 200°-230°C. None of them 

were isolable. 
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To remove the complications caused by having a butenyl or vinyl 

group in the molecule, the pyrolysis of l-allyl-2-phenyl-l,l,2,2-tri-

methyldisilane 175 was carried out. At 770°C (1 X 10"^ mm Hg), 80% 

of the mass was recovered and GC analysis showed only one product along 

with unreacted 175 (35%). The compound was identified as 1,1,3-tetra-

methyl-1,3-disilaindane 176 which was present in a very clean 57% yield 

as based on consumed 175. Although other mechanisms may certainly 

be envisioned, the one that seems to best fit the conversion of 175 to 

176 involves retroene elimination of propene followed by silene to 

silylene rearrangement. The silylene could then conceivably give 176 

by inserting into the phenyl hydrogen or n-addition followed by cleavage 

and hydrogen migration. 
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A~ 
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Me Meg 
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The results reported here suggest that the pyrolytic decomposition 

of allyldisilanes occurs preferentially via retroene elimination to form 

silenes. This is different from what is observed for allyldisiloxanes 

that give cyclic products derived from the corresponding silyl radical. 

It is not clear, however, whether a stepwise process or a concerted 

retroene elimination of propene is involved. Surely, a stepwise silyl 

radical disproportionation mechanism must be involved in what are 

formally ethylene losses (78 from 168 and 144 from 174). Although the 

results are consistent with silene formation followed by rearrangement, 

none of the characteristic silene dimers (94) were ever observed. 
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The obvious way to acquire evidence for the intermediacy of a silene 

or silylene species is by chemically intercepting them with known traps. 

Butadiene was chosen as a trap since it is well-known to undergo 

efficient reactions with silenes (145,146) and silylenes (147). However, 

flow pyrolysis of 168 and 175 with butadiene as the carrier gas between 

500°C and 620°C did not give any of the characteristic cycloaddition 

products of the corresponding silene or silylene. In both cases, a 

very complex mixture of many products was obtained. These experiments 

do not rule out the intermediacy of these reactive species, however, 

since any radicals formed may also be trapped by butadiene. Such may 

be the case in a stepwise retroene process. 

Similar results were reported by Goure (148) who proposed that 

2-methyl-2-silaindane 179 resulted from intramolecular cyclization of 

silene 178 which was produced from retroene elimination of propene from 

177. He too was unable to trap the silene. However, independent 

generation of 178 from silacyclobutane 180 also gave 179 thereby 

supporting his mechanism. Approximately ten other products were also 

formed. 

Me 

180 
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In order to try and understand the factors influencing simple 

homolytic cleavage of the silicon-allyl bond to give silyl radicals 

and retroene elimination affording silenes, the thermal behavior of 

another type allylsilane was looked at. Cis-2-phenyl-l-(allyldimethyl-

silyDethylene 184 was synthesized by the route outlined below. Thus, 

an etheral solution of phenylacetylene was metalated at -78°C with 

n-butyllithium (149) followed by refluxing and addition of dimethyl-

chlorosilane to afford 181 in 85% yield. Diisobutylaluminum hydride 

(DIBAH) reduction to 182 in the presence of one equivalent of N-methyl-

pyrrolidine was accomplished in 95% yield by a literature procedure 

(150). The corresponding chlorosilane was obtained in 77% yield by 

treatment of a pentane slurry of 182 with phosphorus pentachloride. 

Magnesium-induced coupling of 183 and allylbromide then gave 80% yield 

of 184. The cis-stereochemistry was confirmed by the 15.1 Hz coupling 

constants of the vinyl hydrogens as evidenced by NMR spectroscopy. 

When 184 was pyrolyzed at 780°C (1 X 10"^ mm Hg) two major products 

were formed along with 5% unreacted 184 and a 4% yield of styrene. The 

compounds were isolated by preparative GC and identified as trans-2-

phenyl-l-(allydimethylsilyl)ethylene 186 (37%) (coupling constant = 

20.0 Hz for the vinyl hydrogens) and 1,1-dimethyl-l-silaindene 185 

(14%) (151). The yield of 185 goes up to 22% when corrected for the 

cis/trans isomerization product 186. Offered as a likely mechanism for 

the formation of 185 is generation of silyl radical 187, by homolytic 
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0_C = C_H —4. Q-C = 
ClSiMe^H /=rv ^^2 

C—SiH 

181 (85%) 
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0 N—Me 

PCI. 
182 2 > 

SiH 
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182 (95%) 

iCl 
Me^ 

183 (77%) 

183 
xsMg 

Br 

SiMe. 

u 
184 (80%) 

cleavage of the allyl bond, which cyclizes in an endo-fashion on to 

the "butadiene portion" of the ring to given radical intermediate 188. 

Rearornatization of 188 by loss of hydrogen afforded ample driving force 

for the formation of 1-silaindene 185. This is but another example 
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of the cyclization of alkenylsilyl radicals in a regiospecific "anti-

Beckwith" fashion. There was no evidence of a retroene elimination 

L 
I SiMe2 10 torr 

Me. SiH 
Me^ 

184 185 (14%) 186 (37%) 4% 
(22%) 

"̂ 1 Î 

Meg 

188 

occurring in this pyrolysis. Therefore, one should not be lead to believe 

that all allylsilanes decompose by a retroene pathway. A possible 

explanation for the dichotomous behavior of these allylsilanes will 

be given in the summary. 

Whether or not trans-2-phenyl-l-(allyldimethylsilyl)ethylene 186 

would give 1-silaindene 185 was also a question of interest. Therefore, 

186 and 184 were pyrolyzed under exactly the same conditions. The results 

are summarized in Table 13. The relative mole ratios are based on GC 

areas and it is assumed that the GC response factors for 184, 185 and 

186 are about the same. 1-Silaindene 185 is indeed formed from the trans 

compound 186. However, from the relative mole ratios one finds that 
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Table 13. Pyrolysis of 184 and 186 at 780°C (1 X 10"^ mm Hg) 

Starting Material Relative mole Ratio Relative % Yield 
184 185 186 184 185 186 

1.0 4.4 5.3 9.3 41.1 49.5 
'^2 

184 

1.0 2.5 5.4 11.2 28.1 60.7 

Meg 
186 

the yield of j.85 is almost half that obtained from the cis-isomer. 

Quite interesting is the almost identical ratio of 184 to 186 obtained 

in both experiments. Although this is probably a fortuitous occurrence 

and the ratios may not represent an equilibrium concentration, it does 

suggest that equilibrium conditions should favor 186. This would not 

be unexpected based on simple thermodynamic grounds. If one assumes 

that all of the 1-silaindene 185 is formed from the cis-isomer, the 

cis/trans ratio (184:186) obtained on pyrolyzing 186 is reduced to 1:1.5. 

However, from 184 the ratio remains the same. Therefore, one is 

reluctant to believe that either set of ratios represents an equilibrium 

concentration. 

To remove the possibility of cis/trans isomerization, (£-vinyl-

phenyDallyldimethylsilane 189 was synthesized by magnesium-induced 

coupling of allyldimethylchlorosilane and £-bromostyrene (Aldrich). 
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However, pyrolysis of 189 at 780°C (1 X ICT^ mm Hg) afforded a yellow 

viscous oil in 68% mass recovery. Although GC analysis did reveal some 

185 in the pyrolysate (based on GC retention time), the major component 

was by far polymeric. In retrospect, since thermal polymerization of 

styrene is well-known, this result should not have been unexpected. 

Since abstraction of a silyl hydride by tert-butoxy radical was 

found to be a good method of generating silyl radicals, an attempt was 

made to prepare radical 187 in solution. However, when a 1% solution of 

182 in benzene was heated at 1A5°C in the presence of di-tert-butyl 

peroxide, no cyclic products were observed. Starting silyl hydride 182 

was the major product present even after heating for 24 hours. This 

result was quite surprising in view of the earlier work presented in 

this dissertation along with that of Kira _et al. (62). 

'=2 

185 (GC) 

+ Polymer 

Me, 

or 

Me, 2 2 
182 (not observed) 
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In summary, the pyrolysis of allylsilanes affords both silyl radicals 

and silenes. The intermediate formed is dependent on the structure of 

the allylsilane. For example, when allyldisilanes are decomposed under 

pyrolytic conditions, the products formed are most reasonably accounted 

for via silene intermediates. The silenes are formed either by step 

wise or concerted propene elimination. A silene mechanism and not the 

previous proposed radical cyclization mechanism is therefore believed to 

be involved in the very clean formation of l,l,3,3-tetramethyl-l,3-di-

silacyclopentene 78 from l,2-diallyl-l,l,2,2-tetramethyldisilane 76. 

On the other hand, pyrolysis of allyldisiloxanes and allylvinylsilanes 

(184) affords silyl radicals by hemolysis of the silicon-allyl bond. 

These silyl radicals undergo intramolecular cyclization in an endo-

fashion. 

Although there is evidence in the literature that suggest that 

silyl radicals are not stabilized to any significant extent by adjacent 

groups (99,152), the results presented here may suggest otherwise. In 

other words, perhaps disiloxanyl radicals and vinylsilyl radicals (184) 

are sufficiently stabilized to undergo cyclization. However, disilanyl 

radicals may suffer facil 3-cleavage due to the instability of these 

species. Even if this explanation is not correct, the general trend 

may certainly be a helpful "rule-of-thumb" toward predicting which 

process will take place. 
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Pyrolytic Decomposition of 3-Butenylsilanes 

One of the key steps proposed in the decomposition of 2-(3-butenyl)-

l-allyl-l,l,2,2-tetramethyldisilane 142 to l,l,3,3-tetramethyl-l,3-di-

silacyclopentene 78 is hemolysis of the carbon-allyl bond of the butenyl 

unit (Scheme 23). Simple calculations based on published bond dissociation 

energies (99) (D Si-C = 89 kcal/mol, D C-allyl = D C-C 88 kcal/mol -

14 kcal/mol allylic stabilization = 74 kcal/mol) show that the carbon-allyl 

bond should be almost 15 kcal/mol weaker than the carbon-silicon bond in 

142. There are no published experimental data in support of this 

hypothesis. Therefore, the pyrolysis of some 3-butenylsilanes was under

taken. 

In order to look at the primary products of decomposition, 3-butenyl-

trimethylsilane J.90 (153) was pyrolysed at 760°C in a vacuum (1 X 10"^ mm 

Hg). Under these conditions, only 10% decomposition of 190 occured. Five 

major products were identifiable by comparing the GCMS data of the 

pyrolysate with that of the known compounds. The products were tetra-

methylsilane (TMS), vinyltrimethylsilane, ethyltrimethylsilane, allyl-

trimethylsilane 120, and l,l,3,3-tetramethyl-l,3-disilacyclobutane 118. 

The molar ratios of these compounds were approximately 2:1:2:2:1, 

respectively. All of the observed products may be rationalized as having 

Me 

. > SiMe, + EtSiMe 
10-4 torr ^ 

+ .—SiMe_ 



www.manaraa.com

103 

been formed via the mechanism outlined in Scheme 24. The presence of 

IMS in the pyrolysate seems to demand cleavage of the carbon-allyl bond 

followed by hydrogen abstraction. Although other mechanisms are possible, 

they seem very unlikely. Intermolecular addition of the "IMS radical" to 

the n-bond of 187 followed by cleavage or hydrogen migration and homolysis 

(path a or path b) could give three of the other products. It is likely 

that 1,3-disilacyclobutane 118, a known head to tail dimer of dimethyl-

silene (94), is formed from trimethylallylsilane 120 via retroene 

elimination to the corresponding silene (128). 

Scheme 24 

190 

> -—SiMeJ 

191 

> SiMe^ 

Me^Si SiMe 3 

a 

I 
SiMe 3 V 

EtSiMe 

+ 

3 
120 
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The best alternative to the mechanism outlined in Scheme 24 would 

involve cleavage of the butenyl-silicon bond (89 kcal/mol) generating 

trimethylsilyl radical. Attack of trimethylsilyl radical on 190 would 

give a radical adduct that could also give the observed products. 

Trimethylsilyl radical is known to give 118 (92,93) via 1,1-dimethyl-

silene (94). However, based on bond energies and some other results to 

be presented, this author favors Scheme 24. 

biMe-

190 

Me,Si SiMe 3< 

i 
Me^Si 

EtSiMe 3 

• + Me%Si» ^ MegSiz=:CHr 

190 

1,2 H" Me,Si 

i 

V 

/\ 
MegSi^SiMGg 

118 
SiMe. 

+ •—SiMe^ ^ TMS 

120 

Gas phase precursors of a-silyl radicals are scarce. One of the 

few examples in which an a-silyl radical is formed in the gas phase is 

in the thermal decomposition of 1,1-dimethylsilacyclobutane 192. Under 

pyrolytic conditions, 192 was shown to undergo unimolecular decomposition 

to dimethylsilene via initial homolytic fission of the carbon-carbon bond 

(154). The characteristic silene dimer 118 was isolated. The Arrhenius 
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parameters were identical to those known for cyclobutane; namely log = 

15.64 and = 62.6 kcal/mol. Barton and coworkers (155) demonstrated 

that other silacyclobutanes decompose via a-silyl radicals when they 

pyrolyzed 1,1,2-trimethyl-i-silacyclobutane 193 in a nitrogen-flow system 

between 520° and 680°C. Again, silene dimers were formed. Working 

with 2-methyl and 2-phenyl substituted 1,1-dimethyl-l-silacyclobutane, 

Golino et (156) concluded that carbon-carbon bond cleavage occurred 

at least twenty times faster than silicon-carbon hemolysis. Other 

workers have also examined the thermal decomposition of 1,1-dimethyl-l-

silacyclobutane, and various substituted derivatives (157,158), and have 

reached similar conclusions. 

Me Me 
I I 

Me—Si—, Me—Si 
Me. 

> I > MegSiszCHg > I ( 1 Meg 
192 118 

Me 

Me—Si Me—Si 
Me 11-

Me2Si— ^ y_si 

193 194 

Meg 

Conlin and Wood (159) recently reported that the pyrolysis of 1-

methyl-l-silacyclobutane 195 affords dimethylsilylene 197 which could be 

trapped in excellent yield. They proposed that initially formed methyl-

silene 196 underwent 1,2-hydrogen migration to dimethylsilylene 197. 
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Support for this migration was offered by Drahnek et (160) and 

Arrington et (161), who reported that photochemioally generated 196 

isomerizes to 197 at 100 K. Shortly there after, Barton et (4) 

presented evidence that under their thermal conditions, 196 does not 

195 196 197 

Me^S^ . Me^sfj] 

1^9 (64%) 

isomerize to j.97. Only the silene trapped product of 2,3-dimethylbutadiene 

along with the silene dimer were observed when 196 was generated at 450°C 

from the Diels-Alder adduct of 1-methyl-l-silacyclohexadiene and perfluoro-

2-butyne. Total product yields were approximately 66%. Since no products 

derived from dimethylsilylene 197 were present, these authors offered an 

alternative mechanism to the isomerization of 196 to 197. Their 

mechanism (Scheme 25) involved 1,2-hydrogen migration from a-silyl 

radical 200 followed by either direct cleavage to 197 or recombination 

followed by sllylene extrusion from 1,1-dimethylsilacyclopropane. Based 

on some theoretical studies on the isomerization of J.96 to 197 by Goddard 

et (162) who calculated the energy barrier of the reaction to be 41 

kcal/mol, and most recently by Nagase and Kudo (163) who predict a 40 

kcal/mol activation energy, an alternate mechanism to that proposed by 

Colin and Wood (159) deserves some consideration. 
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Scheme 25 
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However, 1,2-hydrogen migration from silicon to a carbon-centered 

radical, such as suggested by Barton et (4), has never been reported. 

In fact, very few 1,2-migrations from silicon to carbon-centered 

radiais are known. One example of 1,2-migration, however, has been 

reported to occur in the gas phase. Shiina and Kumada (164) showed 

the hexamethyldisilane readily rearranges to (trimethylsilylmethyl)-

dimethylsilane 119 and trimethylsllane 202 at 600°C. One of the key 

Me^SiSiMe^ 
600°C 

•> Me^SiCH^SiMe^H + Me^SiH 
2. I !> 

119 202 
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steps in the proposed chain mechanism was 1,2-trimethylsilyl migration 

to silyl radical 204. The rearrangement must have an appreciable barrier 

of activation since when generated in solution, between 80°C and 12A°C, 

no rearrangement occurs (165,166). 

Me^SiSiMe, > 2 Me,Si' 
5 ^ J 

Me,Si- + Me^SiSiMe, > Me,SiH + -CH^SiMe^SiMe, 

202 203 

'CH SiMegSiMe? > Me^SiCH^SiMe^-

203 204 

Me^SiCHgSiMeg' + Me^SiSiMe^ > 119 + 203 

204 

The reason for the apparently high barrier to 1,2-migrations from 

silicon to carbon-centered radicals in solution is not clear. Furthermore, 

it is somewhat puzzling when one considers the many documented cases of 

1,2-migrations involving all carbon systems. For example, 1,2-phenyl 

shift from carbon to a carbon-center radical is well known. Although 

this migration proceeds with a rate constant of only 59 sec"^ (167,168), 

other aromatics migrate with rate constants of about 10^ sec"^ (169, 

170). The analogous phenyl shift from silicon to carbon is unobserved 

(171). However, the reverse process of migration from carbon to a silicon-

centered radical does occur. Since these rearrangements most likely 

proceed via ipso-attack on the aromatic ring, as opposed to migration 

across the frontier orbitals, the transition state leading to 206 from 

205, and vis versa, should be the same. Wilt _et _al. (172), therefore, 
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facile 

-Si—CH • 
/ known 
205 

\ unknown Ph 

206 

proposed that the stability of a-silyl radical 205, and not the stain of 

the intermediate, prevented the rearrangement. The intermediate proposed 

by Wilt and coworkers was the spiro-silacyclopropyl radical 207. 

Examination of 207 leads one to suggest an alternative explanation 

for the absence of 1,2-phenyl migrations from silicon to carbon. 

Namely, based on bond strengths, bond a should be weaker than bond b 

(99). Therefore, once intermediate 207 is formed, whether from 

a-silyl radical 205 or silyl radical 206, the product obtained should 

result from hemolysis of the weaker bond a. This explanation also 

seems to fit the reported observations. However, since migration of 

hydrogen, as well as simple alkyl groups, would probably involve frontier 

orbitals, this explanation can not be extended to these substituents. 

The pyrolysis of 3-butenylsilanes, which appear to give a-silyl 

radicals, may prove useful in looking at 1,2-hydrogen shifts from silicon 

to carbon-centered radicals. To examine this, the pyrolysis of 3-butenyl-

dimethylsilane 59 was carried out. At 840°C, flash-vacuum pyrolysis 

Me 
2 

207 
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(1 X 10"^ mm Hg) of 59 afforded cleanly two major products but with only 

a 56% mass recovery. The compounds were isolated by preparative GC and 

identified as allyltrimethylsilane 60 (4%), and trimethylsilane 188 

(17%), The yields are based on 75% consumption of 62. A trace amount 

^^2 SAQOC "^^2 
SiMe? _ ^IH + Me^Si siMe ^ jj-nc-, JslM 0-Lnc„ 

10" torr ^ + / \/ 

120 (17%) 60 (4%) 118 (<1%) 

(<1%) of l,l,3,3-tetramethyl-l,3-disilacyclobutane 189 was detected by 

GCMS. 

Three reasonable mechanisms (Scheme 26) may be envisioned to account 

for the observed products. However, the mechanism that this author 

believes best accounts for the observed products is route A. Hemolysis 

of the carbon-allyl bond as the initial step, which affords a-silyl 

radical 210, seems reasonable based on bond strengths (99) coupled with 

what was demonstrated for 3-butenyltrimethylsilane 190. 1,2-Hydrogen 

migration in 210 followed by intermolecular addition of trimethylsilyl 

radical to 59 would give radical adduct 211 which could decompose to 

products via path a and path c. 

Although the route A mechanism is certainly consistent with the 

products formed, it is not demanded. One alternative, route B, could 

involve endo-closure of silyl radical 92 followed by B-cleavage and 

hydrogen abstraction. Since it is unlikely that 92 would be formed by 

simple homolytic cleavage of the silicon-hydrogen bond (D Si-H = 90 

kcal/mol (99)), it would have to occur via hydrogen abstraction by some 
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other radical (R*). Furthermore, the absence of both 198 and 199 in the 

pyrolysates tends to argue against route B. However, it appears that 

consideration of the differences in the relative rates of addition of 

a silyl radical to a ir-bond versus abstraction of a silyl hydride by 

another radical should allow for distinction between route A and route 

B. It seems reasonable to assume that R* is a carbon-centered radical. 

Unfortunately, there are very little kinetic data available to make a 

good comparison. Although Choo and Caspar (173) obtained a rate 

constant of 1.7 ± 1.0 X 10^ sec"^ for the addition of trimethylsilyl 

radical to ethylene at 20°C, no data is available on the abstraction of 

a silyl hydride by an alkyl radical at this temperature. The only data 

found on the abstraction reaction was published by Berkley et aJ^. (174). 

They reported a rate constant of 7.1 X 10 M" sec" for the abstraction 

of the hydrogen from trimethylsilane by methyl radical at 200°C. 

Even if kinetic data were available to make such a comparison, 

it would still not eliminate route C (Scheme 26). Although retroene 

elimination off of a silylhydride is without literature precedence, the 

ene reaction of 1,1-dimethylsilene and propene is known (175,176,177). 

The activation energy for the ene reaction was recently estimated to be 

between 12 and 17 kcal/mol (128). However, route C mechanism does not 

explain the presence of dimethylallylsilane ̂ 0. 

In order to explore further the possibility of hydrogen abstraction 

to form silyl radical 92 (route B, Scheme 26), the thermal decomposition 

of hydride disilane 62 was examined. It was believed that the primary 
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mode of thermal decomposition of 62 should also be via cleavage of the 

carbon-allyl bond of the butenyl unit. If this were true, then two very 

interesting pathways to further reactions would be available to this 

a-disilanyl radical. One of the radicals formed could conceivably 

abstract the silicon hydrogen from 62 to form disilanyl radical 105. 

Endo-cyclization of 105 would give 106, which in accordance with route B 

Me^ Me„ 

'Si—Si—H 

Me^ Me^ 

->,_Si_Si—H 

Me. 

>Si' *SiMe„ 
• / 

R* 

Me^ Me^ 

•Si—Si 

105 

Me f T 
-Si-Si—Me 

106 

Me. 

of Scheme 26, would yield 1-allylpentamethyldisilane 79. The other 

alternative would be for the a-disilanyl radical (R-) to undergo a 

1,2-silyl shift (164). 

However, when 62 was pyrolyzed at 760°C (1 X 10"^ mm Hg) only one 

product, 3-butenyldimethylsilane 59, was formed in a very clean 96% yield 

based on 94% consumption of 62. This product is most reasonably explained 

as coming from the well-known reductive-elimination of dimethylsilylene. 

Me,^ Me^ 760°C 
5i—Si—H 10"^ torr 

SiMegH 

62 59 (96%) 
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Just as the work presented herein was being completed, Davidson 

(178) communicated to us some kinetics that was done on 3-butenyldi-

methylsllane 59. He found trlmethylsllane 202 to be the major thermal 

decomposition product of 59. There are two reasonable pathways by 

which 202 could be formed (Scheme 27). Path a would Involve 1,2-hydrogen 

Scheme 27 

Me^SlH<—gtL 

202 

Meg 

• —SIH 

210 

MeCl 

V 

1,2 H-
—a. ^ Me-,S1' RH 

MeCl 

Me^SiCl 

->Me^SiH 

202 

213 

migration ina-silyl radical 210 followed by hydrogen abstraction by 

trlmethylsllyl radical, while path b would involve direct hydrogen 

abstraction of radical 210. Since it is well-known the silicon-centered 

radicals abstract halogens from alkyl and aryl halides, excess methyl-

chloride was added and the reaction repeated. Under these conditions, 

trlmethylsllane 202 was suppressed and trimethylchlorosilane 213 formed. 

This result is consistent with the formation of trlmethylsllyl radical 

via 1,2-hydrogen migration. Davidson did not report any 3-butenyl-
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dimethylchlorosilane which would be formed by methyl chloride trapping of 

silyl radical 92 (Scheme 24). Davidson also estimated a 44 kcal/mol 

barrier for the rearrangement. 

These results not only demonstrate that 3-butenylsilanes thermally 

decompose via silicon-allyl cleavage, but also suggest that the 

corresponding hydrido silane undergoes what must be a very rapid 1,2-

hydrogen migration. 

To try and obtain at least a quantitative measure of just how fast 

the 1,2-hydrogen migration was, a competition experiment between 

cyclization and hydrogen migration was designed. The compound chosen 

for the study was di(3-butenyl)methylsilane 214 which was prepared 

in 63% yield by magnesium-induced coupling of two equivalents of 4-bromo-

l-butene and methyldichlorosilane. It was expected that upon pyrolysis 

of 214, either of two processes, or a combination thereof, would take 

place. 1,2-Hydrogen migration in a-silyl radical 215 followed by intra

molecular addition of the silyl radical, 92, would give products of the 

silacyclopentyl ring system. But based on Wilt's (73) work on similar 

radicals in solution, 215 should cyclize in an endo-fashion to sila-

cyclohexyl radical 216. The product ratios should reflect the relative 

rates of the two pathways. Flash-vacuum pyrolysis (1 X 10"^ mm Hg) of 

214 at 730°C afforded only a 37% mass recovery of pyrolysate. GC 

analysis revealed a very complex mixture of volatile compounds of which 

the major product was isolated (preparative GC, 9 ft, 20% OV-lOl/Chromo-

sorb W, 130°C) and identified by NMR and mass spectrum as allyldimethyl-
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Me -H 

Ô 
216 

r 
Me H 
\ / 

217 

Me H 

214 

endo \ 1.2 
Si--* 

215 

Me, 

198 

Me Me 

à  
92 findo Me. 

Si, O 
Me. 94 

ù ~ o  ̂  
199 

silane 60. By comparison with known mass spectra (137,179), GCMS showed 

that both 198 and 199 were present in the pyrolysate. Also by GCMS, 

two other isomers of 198 and 199 (C-H,„Si) were also present. Although 
rs.rv/rs.. 6 lZ_ 

at a much lower temperature, 630°C, the mass recovery of pyrolysate went 

up to 79%, the complexity of the product mixture did not change. Only 

about 5% to 10% of 214 was consumed at 630°C, 

In retrospect, it had not been established that a-silyl radicals 

cyclize in the gas phase. Therefore, the pyrolysis of di(3-butenyl)-

dimethylsilane 218 was carried out (Scheme 28). Compound 218 should give 

a-silyl radical 68 which has been shown to undergo predominantly endo-

closure in solution (73) (see Historical section. Table 11). Vacuum 
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pyrolysis of 218 at 760°C (1 X 10"^ mm Hg) afforded trimethylallylsilane 

120 as the major product formed in 32% yield based on 86% consumption of 

218. Also formed were small amounts (<3% each) of about seven other 

volatile products. The formation of trimethylallylsilane 120 was quite 

surprising as it was totally unexpected. 

760°C 
Me Me 

10"^ torr 

218 120 (32%) 

Two very interesting mechanistic possibilities are envisioned to 

account for the formation of trimethylallylsilane 120 from 218. Scheme 26 

outlines a route in which a-silyl radical 68 undergoes the expected 

endo-closure (73) followed by disproportionation of 219 giving 1,1-dimethyl-

l-silacyclohex-3-ene 220. Under the reaction conditions, however, 220 

could decompose via retro-Diels-Alder reaction to dimethylsilene 121 and 

butadiene. Ene reaction of 121 with propene (175) could then give 

trimethylallylsilane 120. Barton (180), in some unpublished results, 

has evidence that silacyclohex-3-enes decompose via retro-Diels-Alder 

reactions. However, this might not be a concerted process. Whether 

concerted or stepwise, the result is the production of a silene unit. 

The other reasonable route to 188, Scheme 29, also starts with 

homolytic cleavage of the carbon-allyl bond of 218 to form a-silyl radical 

68. However, instead of endo-closure or exo-closure, radical 68 might 
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Scheme 28 

Me Me Me, 

218 

68 

, Me_ 
222a» ̂  

219 

t '  
MeySi. 

Me, 
ene 

Me, 

Si, 

120 
121 

Q 
220 

undergo intermolecular addition with 218 to form radical adduct 221. 

3-Cleavage of adduct 221 would give (3-butenyl)allyldimethylsilane 222 

which upon cleavage followed by hydrogen abstraction would afford 120. 

The other fragmentation product, radical 223, might decompose to some 

of the minor products in the pyrolysate. 

Scheme 29 

Me Me 

218 

Meg 

Si--'. 

68 

120 

SiMe, 

Me, 

\—Si-
212 222 223 
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Experiments designed to check for a silene intermediate, as proposed 

in Scheme 28, could lead to complicated results since radicals are 

trapped by the same compounds used to intercept silenes. However, support 

for the mechanism outlined in Scheme 29 could be obtained by independently 

pyrolyzing (3-butenyl)allyldimethylsilane 222. Thus, 222 (181) was 

prepared in 70% preparative GC yield (9 ft, 20% OV-lOl/Chromosorb W, 

column temperature 12G°C) by reaction of excess allylmagnesium bromide 

and (3-butenyl)chlorodimethylsilane. When 222 was pyrolyzed at 760°C 

(1 X 10"^ mm Hg), 77% of the mass was recovered and analyzed by GC. 

Three major products were formed in about a 1:1:1 ratio along with 25% 

unreacted 222. The compounds could not be separated by GC and were, 

therefore, isolated as a mixture of the three. They were identified, 

by matching the NMR and GCMS with that of the known compounds (137,179), 

as l,l-dimethyl-l-silacyclopent-3-ene 198 (21%), 1,1-dimethyl-l-silacyclo-

pent-2-ene 199 (17%), and allyldimethylvinylsilane 172 (20%). The 

yields are based upon consumed 222. Absolutely no trimethylallylsilane 

120 could be found in the pyrolysate upon careful examination of the 

GCMS. 
Me, 
2 

Me, 
2 Me 

222 198 (17%) 199 (21%) 
Me^ 

172 (20%) 
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Mechanistically, the presence of 198 and 199 is quite significant 

in that they are most likely formed via endo-cyclization of a-silyl 

radical 212 (Scheme 30). Therefore, the mechanism outlined in Scheme 29 

Scheme 30 

Me. Me 
Me ^Me ,SL endo Si 

Me Me 

^ ,Si_ endo ^ ,SL 
siV>s^ 

222 212 ' 94 

Mer 

O • Ù 
198 199 

Me, 

Si 

222 224 

2 ^-H' 172 

for the formation of trimethylallylsilane 120 from dibutenylsilane 218 

is believed to be non-operative. Since 212 closes intramolecularly in 

an endo-fashion, it is possible that 68 could have endo-cyclized to 

219 and proceeded to 120 via the mechanism outlined in Scheme 26. 

Therefore, of the two possibilities presented here, formation of tri-

methylsilane 120 via an ene reaction is favored. Furthermore, cyclization 
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of an a-silyl radical, followed by retro-Diels-Alder reaction and 

subsequent ene reaction, could account for the observation of dimethyl-

allysilane 60 as the major product of the thermal decomposition of 

di(3-butenyl)methylsilane 214 (discussed on page 116). In other-

words, retro-Diels-Alder reaction of 217 followed by ene reaction of 

1-methylsilene and propene would give 60. 

C O 0 
214 217 60 

The formation of silacyclopentyl radical 94 from radical 212, 

which gives 198 and 199, is related to another mechanistic question 

posed earlier in this section. Route B in Scheme 24 was proposed as 

an alternative means of forming trimethylsilane 120 from 59. Although 

this mechanism was dismissed on the basis of some methyl chloride trapping 

experiments (178), B-cleavage of endo-closed silacyclopentyl radical 94 

followed by hydrogen abstraction was worth consideration; especially 

since it is possible that cyclization may be faster than halogen 

abstraction. However, since silacyclopentyl radical 94 is most likely 

formed during the thermal decomposition of 222 (Scheme 30), from which 

absolutely no trimethylsilane 190 is found, then route B in Scheme 24 

is even less believable. 
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Although it is now clear that cleavage of a carbon-allyl bond does 

occur quite readily in 3-butenylsilanes, there is the possibility that 

silicon-allyl cleavage could have occured in 222. Furthermore, endo-

cyclization of the corresponding silyl radical, 92, would give the same 

silacyclopentyl radical, 9A, formed from endo-closure of a-silyl radical 

212. Therefore, product analysis does not alow for a mechanistic 

distinction. However, when the pyrolysis of 222 was repeated in a flow 

system at 540°C with methyl chloride as the carrier gas, GC analysis 

showed no peaks present that corresponded to (3-butenyl)dimethylchloro-

silane 225. Had the silyl radical been responsible for the observed 

products, it should have been trapped by methyl chloride. Furthermore, 

the relative ratios of the products formed with methyl chloride and 

without methyl chloride did not change. 

Me Me 

222 

Me 

225 

(not observed) 
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In summary, the decomposition of 3-butenylsilanes start with cleavage 

of the carbon-allyl bond affording a-silyl radicals. The next best 

alternative, silicon-butenyl cleavage, is found not to occur as readily. 

This is certainly in keeping with what would be predicted based on 

published bond energies (99). 

The first clear example of 1,2-migration of hydrogen from silicon to 

a carbon-centered radical was demonstrated in the pyrolysis of 3-butenyl-

dimethylsilane 59. 1,2-Migration of hydrogen was found to be quite 

competitive with other reactions of the thermally generated a-silyl 

radical. Also, when substituted with another alkenyl group, these a-silyl 

radicals are found to unoergo intramolecular cyclization in an endo-

fashion. 

•SiR 3 

H 
I 
CHg —SiRj 
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Gas Phase Generation and Reactions 

of Alkenylsilyloxy Radicals 

The addition of silyloxy radicals to olefins is a well-established 

process. Edge and Kochi have studied the intermolecular addition of 

trimethylsilyoxy radical to various olefins, such as ethylene, propene 

and butadiene, by ESR (182). The radical was generated by photolysis of 

trimethylsilyl tert-butyl peroxide. Although no quantitative data were 

reported, it was demonstrated the trimethylsilyloxy radical added to 

olefins much faster than the analogous tert-butoxy radical. Also, 

hydrogen abstraction by trimethylsilyloxy radical was shown to be a minor 

process. However, no reports of intramolecular cyclization of silyloxy 

radicals could be found in the literature. Intramolecular addition of 

alkoxyl radicals is known (2) (see the Historical section on alkoxyl 

radical cyclization). 

Mei SiOOCMê  
3 3 

hv 

Me^SiO- + OCMe 3 

Me^SiOH Me SiOCH CHg HOCMe 
3 CHgCHgOCMe^ 

Having clearly demonstrated that silyl radicals, both in solution 

and in the gas phase, do not cyclize in a Beckwith exo-fashion, a 

systematic study on the intramolecular closure of silyloxy radicals was 
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undertaken. As was the case with silyl radicals, the degree of endo-

versus exo-closure and the synthetic utility of the cyclization were 

questions of primary interest. In order to maximize the probability of 

intramolecular addition, a gas phase generator of alkenylsilyloxy 

radicals was desired. Pyroltyic cleavage of an allyl group seemed to be 

a good candidate. Therefore, a series of alkenylallyloxysilanes were 

synthesized and examined as possible gas-phase precursors to silyloxy 

radicals. 

(4-Pentenyl)allyloxydimethylsilane 226 was prepared in 66% yield 

by addition of A-pentenyldimethylchlorosilane 225 to an ether solution 

containing one equivalent each of allyl alcohol and pyridine. Pyrolysis 

of 226 gave one major product at 700°C (1 X 10"^ mm Hg) along with 77% of 

226. The product was present in 25% yield based on reacted 226, and was 

identified as vinylallyloxydimethylsilane 227. The yield of 227 was 

reduced to 12% when 78% of 226 was consumed at 780°C (1 X 10"^ mm Hg). 

One possible route to 227 would envolve endo-closure of silyloxy radical 

MGg Meg 
. _ .Si-0 700°-780°C . ^Si-0 

lO-^torr { 

226 227 (12-25%) 

228 followed by B-cleavage of 229 and loss of hydrogen from 230 (Scheme 31, 

route A). Although this mechanism is certainly consistent with the 

formation of 227, the complete absence of 231 and 22 from the pyrolysate 

(83% mass recovery) may suggest otherwise. Based on previous observations. 
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Scheme 31 
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some loss of hydrogen from 229 would be expected. An alternative 

mechanism (route B, Scheme 31) would involve an all-carbon concerted 

retroene elimination of propene. If route B of Scheme 31 is operative, 

then replacement of the allyloxy group by a thermally non-labile group 

should not alter the course of this reaction. 

Indeed, pyrolysis of A-pentenylphenyldimethylsilane 233 at 700°C 

gave 32% yield of vinyldimethylphenylsilane 234 (183) as predicted. The 

yield of 234 was reduced to 19% at 780°C accompanied by formation of 

dimethylphenylsilane (10%) (184) and allyldimethylphenylsilane (6%) 

(185); formed most likely via radical processes. The yields are based 

on consumed 233. Since the formation of 234 must undoubtedly occur via 

a retroene process, it seems reasonable that a retroene mechanism (route 

B, Scheme 31) and not the silyloxy radical pathway (route A, Scheme 31) 

accounts for the formation of 227 from 226. The temperature requirement 

Me Me Me Me 

10" torr 

233 234 (32%) 

for these retroene reactions are in keeping with those reported by Egger 

and Vitins (186) for the retroene formation of propene and butadiene from 

hepta-l,6-diene. 

In order to remove the possibility of retroene elimination, the next 

lower homolog of 226 was examined. However, when 3-butenylallyloxydi-

methylsilane 235 was pyrolyzed at 760°C (1 X 10"^ mm Hg), only 69% of the 
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mass was recovered which consisted of ca. 80% 235. A complex mixture of 

about nine volatile products made up the other 20%. None were present 

in high enough yields to be isolated. On increasing the pyrolysis 

temperature to 820°C, a very complex mixture of greater than fifteen 

products was formed; none were major. The mass recovery dropped to 44%. 

Obviously, the thermal decomposition of 235 is a complex problem which 

is probably aided by the presence of a 3-butenyl group (see the section 

on the Pyrolytic Decomposition of 3-Butenylsilanes). 

Si—O 
760°-82G°G^ "COMPLEX MIXTURE" 

10"^ torr 

Allyloxyallyldimethylsilane 236 was the next homolog examined in the 

series which lead to some interesting results. When 236 was pyrolyzed 

between 800° and 900°C in a vacuum (IX 10"^ mm Hg), more than eight 

products were formed as evidenced by GC. GCMS analysis revealed that 

hexamethylcyclotrisiloxane (Cy) was one of the products present in the 

mixture. Other compounds had molecular formulas consistent with isomers 

of 236, 236 plus dimethylsilanone (Me2Si=0), and isomeric D^. The major 

product throughout this temperature range was unreacted 236. There were 

no compounds present by GCMS that had molecular formulas consistent with 

either 238 or 117. However, it is possible that these compounds might 

not have been stable under the reaction conditions. Whether the primary 
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products formed from 236 are stable or not, the presence of in the 

pyrolysate suggested that dimethylsilanone, or an equivalent thereof, 

was generated in the reaction. 

Me ^Me 
"Si—0 800°- 2C 

ICT^ torr 

Me ,Me 

X 
g 9 ^ 

Me--S^ox^Si--Me 

Me Me 
D, 

> 7 others 

236 

Me Me 

"'si—0. 
Me /Me 

Ô 
238 

Me .Me 
\ / 
.Siv 

(not 
observed) 217 

Silanones have received much attention in the literature and much 

of the chemistry and many of the reactions of these reactive intermediates 

appears to be understood (158,187,188). One of the main reactions is 

trimerization to form analogs which is widely accepted as diagnostic 

for the presence of a silanone. Another well-known reaction of silanones 

is silicon-oxygen bond insertion (189). This reaction has been used to 

chemically trap these intermediates. One of the most frequently used 

trapping reagents is dimethyldimethoxysilane 239 (190). 

A copyrolysis of 236 and a ten fold excess of dimethyldimethoxy

silane was carried out to trap any dimethylsilanone that may have been 

formed. The reaction was done in a nitrogen-flow system (35 mL/min) 

through a quartz tube heated to 650°C. Analysis of the pyrolysate by GC 
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showed one major product along with dimethyldimethoxysilane 239. The 

compound was identified as sym-dimethoxytetramethyldisiloxane 238 (190) 

which was present in 99% yield. Since 240 is the known dimethylsilanone 

Me„ Me„ Me„ 

MegSiCOMeig MeOSiOSiOMe 

236 239 240 (99%) 

(93%) 

trap (189), the mechanism in Scheme 32 is offered. Namely, hemolytic 

cleavage of the oxygen-allyl bond would give allyldimethylsilyloxy 

radical 237. g-Elimination of radical 2^7 via silicon-allyl cleavage 

would give dimethylsilanone which in the presence of excess dimethyl

dimethoxysilane 239 undergoes insertion affording 240. Since dimethyl

dimethoxysilane 239 has also shown to give 240 (191), 239 was pyrolysed 

under identical conditions. The yield of 240 from dimethyldimethoxy

silane 239 was approximately 2% which makes the actual yield of 240 from 

allyloxyallydimethylsilane 236 93%. 

It is just as likely that the initial cleavage in the decomposition 

of 236 could occur at the silicon-allyl bond. The bond dissociation 

energies for a silicon-carbon (89.3 kcal/mol (99)) and an oxygen-carbon 

(85 kcal/mol (192)) bond are too close to argue for predominance of 

either cleavage. However, the previously used methyl chloride trapping 

experiment could allow for the distinction as initial cleavage of the 

silicon-allyl bond would give the corresponding silyl radical which 
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Scheme 32 

Me ,Me "t. 

236 237 

T T Me Si(OMe) Me 
MeO—Si—O—Si~OMe ^ ^Si=0 

1 
Me Me 
240 

Me^ 

should abstract chlorine from methyl chloride. Thus, when 236 was 

pyrolyzed in a methyl chloride-flow system (35 mL/min), in a temperature 

range where only a minimum amount of decomposition of 236 would take 

place (500°C-560°C), no allyloxychlorodimethylsilane was found in the 

pyrolysate by GCMS. This suggested that oxygen-allyl cleavage (Scheme 32), 

Me^^ /Me Me M^^yWe 
^ MeCl ̂  ClSiO.^^^^^ 

236 241 (not 
— — observed) 

and not silicon-allyl cleavage is the initial step in the formation of 

dimethylsilanone from 236. Evidence that a reaction takes place in the 

presence of methyl chloride is seen in the formation of (GCMS) in this 

temperature range. 

Although several methods exist for the formation of a silanone unit 

(158,187,188), the thermolysis of allyloxyallyldimethylsilane is certainly 

one of the highest yield generators. Furthermore, it has an major 

advantage over other methods because of the simplicity of the precursor 

which is easily prepared from commercially available starting materials. 
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It is Important that the second leaving group in the decomposition 

to dimethylsilanone be capable of stabilizing the radical. This was 

demonstrated when allyloxydimethylsilane 116 was pyrolyzed at 650°C in 

a nitrogen-flow system (35 mL/min). Only 38% of the total mass was 

recovered and, although GC analysis showed only two volatile silicon 

products, they were present in very poor yields. However, a very complex 

mixture of none isolable high molecular materials were seen by GC with 

no recovered 116. The two volatile compounds were identified as allyl-

oxy-l,l,3,3-tetramethyldisiloxane 242 (11%) (193) and (2%); presumably 

formed via the intermediacy of dimethylsilanone. The presence of 

Me Me *^^2 "^^2 
\ / DSi—H 65G°C OSi—OSiH + 

h^-flow 

116 242 (11%) (2%) 

i 
> "'>1=0 _T™==r_V 

Me 

dimethylsilanone was checked by copyrolyzlng 116 with dimethyldimethoxy-

silane 239 under the same conditions. A 15% yield (corrected for self-

decomposition of 239) of sym-dimethoxytetramethyldlsiloxane 240 was 

obtained. The other two products, 243 (4%) and 244 (5%), are most likely 

formed by a combination of a redistribution reaction (194) and silanone 

trapping. 
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'^®2 Me2Me2 
+ MegSitOMeïg ^ 240 + MeOSiOSiH 

116 (15%) 242 (4%) 

- " v_^ 
Iredistribution 

Me^ MSg 

^ ̂OSiOMe + MeOSi—H 

244 (5%) 

Therefore, the pyrolysis of allyloxydimethylsilane 116 not only 

demonstrates the importants of a second radical stabilizing group, but 

also demonstrates that oxygen-allyl cleavage does take place. The 

alternative would involve silicon-hydrogen cleavage followed by 

disproportion of silyl radical 241. Based on bond energies (99), this 

would be a higher energy process by at least 15 kcal/mol. 

Such a high yield production of dimethylsilanone from allyloxy-

allyldimethylsilane 236 led to the postulation of other similar precursors. 

One compound that was thought to be a good candidate was 1,2-diallyl-

oxy-l,l,2,2-tetramethyldisilane 245 (195). It was rationalized that 245 

might decompose to two moles each of dimethylsilanone and propene. This 

could occur either via initial oxygen-allyl or silicon-silicon hemolysis 

followed by disproportionation. Although it is well-known that alkoxy 

disilanes undergo reductive-elimination to silylenes (147), it was 

believed that conditions were silyloxy radical formation would be 

competative could be found. When 245 was pyrolyzed at 760°C (1 X 10"^ mm 

Hg), 66% of the mass was recovered and analyzed by GC. Three major 
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MegMGg 

^0-Si—Si-O" 

245 1 
^ .O-Sl-Si-0» 

246 

'^®2 2 Me^ 

I 
*SiO. 

241 

- > 2 Me2Si=0 + 2 CH^ 

products were present. They were isolated by preparative GC and identified 

as diallyloxydimethylsilane 247 (20%) (196), 3-allyloxy-l-allyl-l,1,3,3-

tetramethyldisiloxane 248 (25%), and l,5-diallyl-l,l,3,3,5,5-hexamethyl-

trisiloxane 249 (18%) (197). All of the starting material, 245, was 

consumed under these conditions. 

Meg Me^ Me_ 

^05i_S10^^ 

245 247 (20%) 

Me^ Meg Me^ Me^ Me^ 

^2>s^x'OSi--SiO + ^Zfs.x'Si-O-SiO-Si, 

248 (25%) 249 (18%) 

The presence of a dimethylsilanone unit (MegSi^O, CgH^Si^O^) in all 

of the products suggested that perhaps 245 had decomposed as predicted. 

However, 247 could be an a-elimination product that would be formed on 

extrusion of dimethylsilylene from 245. To examine these possibilities, 

trapping experiments for both reactive intermediates were carried out. 
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Therefore, a nitrogen-flow (35 mL/min) copyrolysis of 245 and 2,3-dimethyl-

butadiene (silylene trap) (147), and a copyrolysis of 241 and tetramethoxy-

silane (silanone trap) (188) were done at 500°C. These data are given 

in Table 14. From these data, not only can it be seen that addition of 

Table 14. Trapping experiments of 241 at 500°C 

Relative % Yield Ratio 
Trap 247 248 249 Trap Product (% Yield) 

250 

Meg 

(MeO) SiOSiOMe (0%) 

240 

2,3-dimethylbutadiene reduces the relative yield of both 248 and 249, 

taut the characteristic silylene trapped adduct, 250, is also formed. 

Thus, a silylene is certainly involved in the thermal decomposition 

of 245. However, there was no evidence of silanone trapping with an 

eight fold excess of tetramethoxysilane. Also, notice that the relative 

yield of 247 and 248 did not change significantly. 

The observations summarized in Table 14 lead to the proposed mechanism 

outlined in Scheme 33. Reductive-elimination of dimethylsilylene from 245 

would afford diallyloxydimethylsilane 247. Insertion of dimethylsilylene 

None 1 1.25 9 

1 0.29 0 H 
(MeO)^Si 1 1 trace 
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into the n-bond of 247 followed by a six-electron rearrangement would 

give 248, which could repeat the it-insertion/rearrangement process giving 

the third product 249. This mechanism seems to best fit all of the 

observations. The tt-insertion/rearrangement process Is not without 

literature precedent as Ishikawa and coworkers (198) have shown that 

photochemically generated silylenes add to allyl ethers affording silyl 

ethers in 3% to 12% yield. 

Scheme 33 

Me Me Me Me Me, 
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To examine the scope of this allyloxydisilane rearrangement, the 

precursor was made simpler by replacing one of the allyloxy groups with 

a methyl. Thus, when 1-allyloxypentamethyldisilane 253 was pyrolyzed 

at 760°C in a vacuum (1 X 10"^ mm Hg), GC analysis of the pyrolysate 

(77% mass recovery) showed cleanly three major products. They were 

isolated by preparative GC (15 ft, 20% OV-lOl/Chrom W, column temperature 

130°C) and identified as allyloxytrimethylsilane 254 (30%) (199), 1-allyl-

pentamethyldisiloxane 255 (13%) (137), and l-(trimethylsiloxy)-2-allyl-

1,1,2,2-tetramethyldisilane 256 (10%). All of 253 was consumed under 

these conditions. These products are best rationalized as proceeding 
Me^ 
/ |vjg sio 

Me^SiSi0^..^^x;^ 76Q°Ç > ^ + Me^SiO—Si 

lOT* torr 254 (30%) 255 (13%) 
Meg 

Me_SiOSi-Si^^^/<^^ 

256 (10%) ^®2 

via a mechanism involving a-elimination of dimethylsilylene followed by 

TT-insertion and subsequent rearrangement. The mechanism is analogous 

to that outlined for the rearrangement of 245 (Scheme 33). When a 

copyrolysis of 253 and a thirteen fold excess of 2,3-dimethylbutadiene 

was done at 500°C, trimethylallyloxysilane 254 was formed in 87% yield 

and the characteristic silylene adduct (147), 1,1,3,4-tetramethyl-l-

silacyclopent-3-ene 250, was present in 95% yield. The yield of 255 was 

reduced to only 4% while no 256 was formed, thus, demonstrating the 

importance of dimethylsilylene to this transformation. Perhaps the best 

evidence for ir-insertion of dimethylsilylene followed by rearrangement 
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was found when 254 was independently pyrolyzed in the presence of another 

silylene generator (200). Copyrolysis of 254 and 1-methoxypentamethyl-

disilane 257 in a nitrogen-flow system at 500°C cleanly afforded tri-

methylmethoxysilane 258 (85%) and 255 (51%). 

Me„ 
Me 

Me^SiO _ _2 Me^SiOMe + Me^SiO—Si-
+ Me;SiSi-OMe > '"3^ 

254 257 258 (85%) 255 (51%) 

f 
xfs/OSiMeu ^0—SiMe, 

Me^SiOMe + Me2Si; ^^ 

Although this chemistry of allyloxydisilanes produced some equally 

interesting results, it was still desired to find evidence of intra

molecular cyclization of an alkenylsilyloxy radical. The problems with 

the precursors tried thus far were the alternative decomposition routes 

available to them. While (4-pentenyl)allyloxydimethylsilane 226 was 

shown to undergo an all-carbon retroene elimination, the next lower 

homolog, 3-butenylallyloxydimethylsilane 235, gave a complex mixture of 

products. Allyloxyallyldimethylsilane 236 appears to have given a 

silyloxy radical under pyrolytic conditions. However, decomposition to 

dimethylsilanone prevents the cyclization process. With allyloxydi

silanes, reductive-elimination to silylene predominated. 
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One possible precursor that does not possess any of the features of 

those previously tried is diallyloxydimethylsilane 247. The only 

reasonable mode of decomposition of 247 is via initial oxygen-allyl 

cleavage. Therefore, 247 was thought to have the best chance of cyclizing. 

Thus, the flash-vacuum pyrolysis (1 X 10"^ mm Hg) of 247 was carried at 

770°C. Analysis by GC showed no products with shorter retention times 

(more volatile) than starting material 247 which made up about 70% of 

the mixture. The other 30% of the pyrolysate (80% mass recovery) was 

made up of six isomers of 247. At 830°C (1 X 10~^ mm Hg), diallyloxy

dimethylsilane 247 made up only 50% of the pyrolysate with the same six 

^8^16^^'^2 isomers making up the other 50%. There were only very trace 

amounts (< 2%) of other volatile compounds formed. Therefore, the 

pyrolysis of 247 was found not to be a useful precursor to alkenylsilyloxy 

radicals. 

Me^ 

770°C , 6 CgH^^SiO^ 
" ^ t.nrr 

(70%) (30%) 
246 10 torr 

In summary, unlike allylsilanes which give silyl radicals, pyrolysis 

of allyloxysilane as precursors to silyloxy radicals does not readily 

occur. However, this may not be entirely due to a reluctance of allyl-

oxysilanes to cleave to silyloxy radicals as it is the availability of 

alternate, and perhaps lower energy, pathways to decomposition. Only 

in one case, the clean formation of dimethylsilanone from allyloxyallyl-

dimethylsilane 236, was any evidence found for hemolysis to a silyloxy 

radical. All the other compounds either failed to give silyloxy radicals 



www.manaraa.com

141 

or the products could be rationalized as having formed via alternative, 

but equally interesting, pathways. 
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CONCLUSION 

When generated in dilute aromatic solvents, alkenylsilyl and alkenyl-

disilanyl radicals were shown to undergo intramolecular cyclization 

when the total chain length consisted of five and six atoms. However, 

no cyclic products were observed for those radicals where the total 

chain length was four atoms. In all cases examined, including an alkenyl-

oxysilyl radical, the products formed were those corresponding to endo-

closure of the silyl radical on to the Tr-unit. The regiospecificity of 

silyl radical cyclization (endo-closure) is, therefore, completely 

opposite that which would be predicted by the Beckwith rules (1) (en

closure) of radical cyclization. The departure of silyl radicals from 

the Beckwith-mode of closure is due to the increased length of a silicon-

carbon bond and the pyramidal geometry of the silicon radical. Therefore, 

it is clear that the Beckwith rules can not be extended to include 

silicon-centered radicals. 

In the gas phase, silyl radicals were also shown to cyclize in a 

regiospecific endo-fashion. This was demonstrated for 1,2-diallyl and 

l-allyl-2-vinyldisiloxanes, and cis-2-phenyl-l-(allyldimethylsilyl)-

ethylene which afforded silyl radicals via cleavage of the silicon-allyl 

bond under pyrolytic conditions. Alkenyldisilanyl radicals, when 

generated by silicon-allyl cleavage at high temperatures, were found to 

undergo a facile disproportionation to silenes. The silene intermediates 

underwent rearrangement to 1,3-disilacyclics via a silene to silylene 

rearrangement. A silene to silylene rearrangement, and not the previously 
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proposed silyl radical mechanism (3), best explains the clean, high 

yield (61%) conversion of l,2-diallyl-l,l,2,2-tetramethyldlsilane to 

l,l,3,3-tetramethyl-l,3-disilacyclopentene. A direct concerted 

retroene elimination to the silenes was not ruled out in this study. 

Unfortunately, hydrogen abstraction by a peroxy radical or silicon-

allyl hemolysis as generators of alkenylsilyl radicals were both found 

to be low to moderate yield processes. Therefore, these are not viewed 

as good synthetic routes to silacyclic compounds. 

The pyrolytic decomposition of 3-butenylsilanes starts with carbon-

allyl hemolysis of the butenyl unit to afford a-silyl radicals. When 

3-butenyldimethylsilane was pyrolysed to afford dimethylsilylcarbinyl 

radical, 1,2-hydrogen migration from silicon to carbon took place. This 

was evidenced by the formation of trimethylsilyl radical which was 

trapped by methyl chloride as trimethylchlorosilane. This is the first 

example of 1,2-hydrogen migration from silicon to a carbon-centered 

radical. Good evidence for the formation of these a-silyl radicals 

was demonstrated in the endo-closure (37%) of allyldimethylsilylcarbinyl 

radical to silacyclopentene products. Allyldimethylsilylcarbinyl radical 

was generated from the corresponding 3-butenylsilane. 

Finally, allyl cleavage of allyloxysilanes was found not to be a 

good method of generating silyloxy radical in the gas phase. However, 

the pyrolysis of allyloxyallyldimethylsilane afforded sym-dimethoxy-

tetramethyldisiloxane in very good yield (93%) when carried out in the 

presence of dimethoxydimethylsilane (silanone trap). This was shown to 
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occur via homolysls of the oxygen-allyl bond to afford allyldlmethyl-

sllyloxy radical which underwent dlsproportlonatlon to dlmethylsllanone 

which was trapped. This Is one of the highest yield sllanone generators. 

All other allyloxysllanes tried decomposed via alternative pathways. 
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EXPERIMENTAL 

Instrumentation 

NMR spectra were obtained either on a Varian model EM-360, a 

Nicolet model 1280 300 MHz, or a Bruker WM 300 MHz spectrometer. 

Decoupling experiments were done on the same spectrometers. NMR 

spectra were obtained either on a Joel model FX90Q 90 MHz or a Nicolet 

model 1280 300 MHz spectrometer. All chemical shifts were reported as 

parts-per-million (6 scale) using either IMS, benzene, chloroform or 

acetone as internal standards. 

IR spectra were recorded on an IBM IR/90 series FTIR spectrometer. 

The bands were reported in reciprocal centimeters (cm~^). 

GCMS data were collected at 70 eV on a Finnegan model 4023 quadropole 

mass spectrometer, and exact mass measurements were obtained on a AEI 

MS-902 mass spectrometer. Gas chromatographic separations were performed 

on a Varian-Aerograph series 1700 instrument. 

Combustion analyses were performed on previously unreported compounds 

by MicAnal, Tucson, AZ. 

Unless otherwise specified, the yields reported herein were 

determined by GC using internal standards and predetermined response 

factors. The peak areas and response factors were obtained using either 

a Varian-Aerograph series 1700 or a Hewlett Packard series 5790A gas 

chromatography instrument. 
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Procedures and Results 

The solution radical cyclizatlon reactions were carried out in 

degassed, evacuated, sealed pyrex ampoules in a heated oil bath. All 

peroxide decomposition reactions were conducted both in tert-butyl 

benzene and in benzene, but yields were determined in only one solvent. 

No effect of solvent was observed. 

All GC yields are based on the amount of reacted starting material. 

Synthesis of 5-bromo-l-pentene and 4-bromo-l-butene 

The synthesis of 5-bromo-l-pentene and 4-bromo-l-butene were 

accomplished by a literature procedure (201) and were characterized by 

NMR spectroscopy. 4-Bromo-l-butene is also commercially available from 

Aldrich Chemical Company. 

Synthesis of 1-chloropentamethyldisilane and 1,2-dichlorotetramethyl-

disilane 

The synthesis of 1-chloropentamethyldisilane and 1,2-dichlorotetra-

methyldisilane were accomplished according to the method of Sakurai 

et al. (202). 

Synthesis of 4-pentenyl-l-dimethylsilane 64 (114) 

To a stirred mixture of excess Mg turnings in 125 mL of dry THF 

under was added dropwise a solution containing 29.6 g (0.20 mol) of 

5-bromo-l-pentene and 18.9 g (0.20 mol) of dlmethylchlorosilane in 125 mL 

of dry THF. After 8 hours, the reaction mixture was hydrolyzed with 

excess H^O and transferred to a separatory funnel containing 100 mL of 

pentane. The pentane layer was extracted with HgO, separated, dried over 
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NagSO^, and filtered. Distillation (108-118°C) afforded 17.8 g (70%) 

of 64: NMR (DCCl,) 6 0.06 (d, J = 3.62 Hz, 6H), 0.57-0.63 (d of t, 

J = 3.24 Hz, 3 = 8.28 Hz, 2H), 1.39-1.50 (m, 2H), 2.04-2.12 (q, J = 

7.1 Hz, 2H), 3.83-3.87 (m, IH), 4.94 (d, J = 10.39 Hz, IH), 5.00 (d, 

J = 19.07 Hz, IH), 5.73-5.86 (m, IH); NMR (DCCi?) 6 -4.41, 13.79, 

23.97, 37.24, 114.55, 138.87; IR (neat) 2112 cm"^ (SiH); mass spectrum 

m/e (% rel. int.) 127 (M-1, 1%), 113 (6), 100 (7), 87 (44), 85 (18), 

60 (9), 59 (100) calculated for SiC^H^^ m/e 127.09431, measured m/e 

127.09489. Elemental analysis calculated for C^Hj^^Si: C, 65.52; H, 

12.59. Found: C, 65.72; H, 12.72. 

Synthesis of 3-butenyldimethylsilane 59 (114) 

Synthesis of 59 was accomplished by the same procedure as for 64 

using 14.1 g (0.15 mol) of 4-bromo-l-butene and 20.0 g (0.15 mol) of 

chlorodimethylsilane dissolved in 100 mL of dry THF to provide 13.6 g 

(80%) of 59 after distillation (65°-75°C). The spectral properties 

of 59 matched those in the literature (114): ^H NMR (DCC1_) 6 0.13 (d, 

J = 3.69 Hz, 6H), 0.71-0.78 (m, 2H), 2.11-2.19 (m, 2H), 3,89-3.94 (m, 

IH), 4.95 (d of d, J = 1.61 Hz, = 10.06 Hz, IH), 5.04 (d of d, 
Q0m CIS 

J = 1.61 Hz, J, = 17.06 Hz, IH), 5.86-6.06 (m, IH); NMR 6 
gem ' trans ' 

(OCCl ) -4.36, 13.46, 28.52, 113.09, 141.2; IR (neat) 2116 cm"^ (SiH) 

mass spectrum m/e (% rel. int.) 113 (M-1, 1%) 99 (16), 86 (14), 72 (22), 

71 (26), 59 (100), 58 (23) calculated for SiC^H^^ (M-1) m/e 113.07866, 

measured m/e 113.07872. Elemental analysis calculated for C^H^^Si: 

C, 63.06; H, 12.38. Found: C, 63.41; H, 12.54. 
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Synthesis of allyldimethylsilane 60 

To a stirred mixture of excess Mg turnings in 100 mL of THF under 

was added a small portion of allyl bromide for initiation. The 

remainder of the allyl bromide (28.8 g, 23.9 mmol total) and 22.6 g 

(23.9 mmol) of dimethylchlorosilane were dissolved in 100 mL of dry 

THF and added dropwise to the stirred solution at a rate sufficient to 

maintain reflux. After stirring for 12 hours, the reaction mixture was 

hydrolysed with excess H^O and transferred to a seperatory funnel 

containing 100 mL of pentane. The pentane layer was extracted with H2O, 

separated, dried over Na2S0^, and filtered. Fractional distillation 

(67°-70°C) gave 15.0 g (63%) of allyldimethylsilane 60: ^H NMR (DCCl,) 

6 0.05 (d, J = 4.0 Hz), 1.53 (broad d of d, J = 4.0 Hz, J = 8.0 Hz, 

2H), 3.63-4.04 (m, IH), 4.57-5.03 (m, 2H), 5.40-6.15 (m, IH); IR (neat) 

2120 cm"^ (SiH); mass spectrum m/e (% rel. int.) 100 (18), 99 (7), 

85 (33), 72 (29), 61 (6), 59 (100), 58 (13), 57 (8). Compound 60 is 

also commercially available from Petrarch Systems Inc. 

Synthesis of cyclopropyldimethylsilane 103 (61) 

To a stirred dowdy suspension of 0.69 M cyclopropyl lithium in 

ether, freshly prepared at 0°C under by the method of Seyferth and 

Cohen (203) using 5.00 g (41.4 mmol) of cyclopropyl bromide (Aldrich) 

and 2 equivalents of finely cut lithium wire, was added 4.73 g (50.0 

mmol) of dimethylchlorosilane in a dropwise fashion. The reaction 

mixture was stirred at 0°C for 5 minutes then allowed to warm to room 

temperature and stirring continued for an additional 15 minutes. The 
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resulting slurry was then filtered through celite and washed with ether. 

Fractional distillation (60°-64°C) afforded 3.27 g (79% yield) of cyclo-

propyldimethylsilane 103: NMR (DCCl^) 6 -0.43 to -0.34 (m, IH), 

0.03 (d, J = 3.67 Hz, 6H), 0.18-0.26 (m, 2H), 0.56-0.62 (m, 2H), 3.71-

3.77 (m, IH); NMR (DCCl?) 6 -6.32, -5.03, 1.66; IR (neat) 2130 cm"^ 

(SiH); mass spectrum m/e (% rel. int.) 100 (1), 99 (7), 85 (39), 73 (7), 

72 (65), 60 (8), 59 (100), 57 (11). 

Synthesis of (3-butenyl)-l,1,2,2-tetramethyldisilane 62 

To a stirred mixture of excess Mg turnings and 7.33 g (39.4 mmol) 

of 1,2-dichlorotetramethyldisilane in 25 mL of dry THF under was 

added a small portion of 4-bromo-l-butene for initiation. The remainder 

of the 4-bromo-l-butene (5.32 g, 39.4 mmol total) was dissolved in 50 mL 

of dry THF and added dropwise to the stirred solution. After 7 hours, 

the liquid phase was removed by vacuum distillation (ca. 0.05 torr) 

at room temperature and collected at -78°C. The distillate was then 

added to a stirred solution of excess LiAlH^ in 200 mL of ether. The 

organic phase was removed by distillation (0.05 torr, 25°C), diluted 

with 100 mL of pentane, extracted with HgO, separated, and dried over 

Na^SO^. Isolation of 2.0 g of pure 62 was accomplished by preparative 

GC on a 9 ft, 20% SE-30/Chromosorb W column at 140°C. The GC-determined 

yield was 30% of 62 : ^H NMR (DCCl,) 6 0.09 (s, 6H), 0.13 (d, J = 4.63 

Hz, 6H), 0.70-0.76 (m, 2H), 2.02-2.12 (m, 2H), 3.60-3.67 (m, IH), 4.88 

(d of d, Jggm = 1.32, = 10.12 Hz, IH), 4.98 (d of d, = 1.32, 

Jtrans = 17-06, IH), 5.82-5.95 (m, IH); NMR (DCCl?) 5 -6.53, -3.82, 
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14.55, 28.68, 112.92, 141.58; IR (neat) 2091 cin~^ (SiH); mass spectrum 

m/e (% rel. int.) 172 (1), 157 (4), 144 (15), 129 (7), 117 (18), 116 

(19), 114 (7), 113 (53), 112 (8), 99 (8), 98 (10), 86 (11), 85 (74), 

73 (47), 72 (7), 71 (7), 60 (10), 59 (100) calculated for SigCgHgg m/e 

172.11036, measured m/e 172.11129. Elemental analysis calculated for 

^8^20^^2* 55.72; H, 11.71. Found: C, 55.94; H, 11.72. 

Synthesis of allyl-1,1,2,2-tetramethyldisilane 61 

The synthesis of 61 was performed by the same procedure as for 62 

using 7.7 g (0.1 mol) of allyl chloride and 18.6 g (0.1 mol) of 1,2-di-

chlorotetramethyldisilane in 150 mL of dry THF. Di& illation (140°-

1450c) afforded 5.0 g of 61 (32%): ^H NMR (DCCl?) 5 0.09 (s, 6H), 

0.13 (d, J = 4.68 Hz, 6H), 1.62 (d, J = 8.09 Hz, 2H), 3.63-3.69 (m, IH), 

4.81-4.88 (m, 2H), 5.71-5.86 (m, IH); NMR (DCCl^) 6 -6.53, -4.20, 

22.94, 112.87, 135.08; IR (neat) 2093 cm~^ (SiH); mass spectrum m/e 

(% rel. int.) 158 (3), 143 (13), 127 (8), 119 (8), 118 (20), 117 (92), 

116 (81), 101 (8), 99 (31), 85 (8), 83 (8), 74 (9), 72 (100), 71 (17), 

59 (77) calculated for SigC^H^g m/e 158.09471, measured m/e 158.09433. 

Elemental analysis calculated for CyH^gSig: C, 53.07; H, 11.48. Found: 

C, 52.78; H, 11.48. 

Synthesis of 2-vinyl-l,1,2,2-tetramethyldisilane 111 

A stirred solution of 10.0 g (53.8 mmol) of l,2-dichloro-l,l,2,2-

tetramethyldisilane in 25 mL of ether was cooled to -78°C under to 

which was added 24.5 mL (53.9 mmol) of 2.2 M vinyl lithium (Alfa) in THF 

very slowly over a 2 hour period. The liquid phase was then removed by 
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vacuum distillation (ca. 0.05 torr) at room temperature and collected 

in a flask cooled to -78°C. The distillate was then added to a stirred 

solution of excess LiAlH^ in 100 mL of ether in a dropwise fashion. 

After stirring 15 minutes, the liquid phase was removed by distillation 

at room temperature under vacuum (0.05 mm Hg) and collected in a flask 

cooled to -78°C. The final solution was diluted with 100 mL pentane 

and extracted with H^O followed by separation and drying (NagSO^) of 

the organic layer. After careful removal of the solvent, distillation 

(112°-120°C) afforded 2.2 g (29%) of 2-vinyl-l,l,2,2-tetramethyldisilane 

111: NMR (DCClj) 6 0.12 (d, J = 4.52 Hz, 6H), 0.16 (s, 6H), 3.64 

(heptet, J = 4.52 Hz, IH), 5.64 (d of d, J = 3.85 Hz, J^rans = 

20.02 Hz, IH), 5.95 (d of d, J ^ = 3.85 Hz, J . = 14.96 Hz, IH), 
y clll UXo 

6.12-6.23 (m, IH); NMR (DCCl?) 6 -6.74, -4.04, 131.34, 138.66; IR 

(neat) 2097 cm~^ (SiH); mass spectrum m/e (% rel. int.) 144 (6), 129 (19), 

117 (13), 116 (76), 86 (10), 85 (94), 83 (10), 73 (84), 60 (8), 59 

(100), 58 (10) calculated for C^H^^Sig m/e 144.07906, measured m/e 

144.07871. 

Synthesis of 4-dimethylsiloxy-l-butene 113 (199) 

To a stirred solution of 5.0 g (69.4 mmol) of 3-buten-l-ol and 5.5 

g (69.4 mmol) of pyridine in dry EtgO was added one equivalent of chloro-

dimethylsilane in a dropwise fashion. The reaction mixture was diluted 

with 75 mL of pentane and then washed twice with saturated NaHCO^ 

solution. The organic layer was separated, dried over NagSO^, and 

distilled (98°-104°C) to afford 7.2 g (80%) of 22; ^H NMR (DCCl^) 6 
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0.19 (d, J = 2.85 Hz, 6H), 2.29 (q, J = 6.78 Hz, 2H), 3.66 (t, 3 = 

6.8 Hz, 2H), 4.59-4.62 (m, IH), 5.02 (d of d, J ^ = 1.11 Hz, J . = yGni wXo 

9.77 Hz, IH), 5.07 (d of d, J = 1.11 Hz, = 6.69 Hz, IH), 

5.72-5.86 (m, IH); NMR (DCCl,) 6 -1.49, 37.03, 63.73, 116.55, 

135.19; IR (neat) 2112 cm~^ (SiH), 1094 (510); mass spectrum m/e (% rel. 

int.) 129 (M-1, 1%), 115 (20), 90 (9), 89 (99), 87 (15), 85 (7), 61 

(13), 60 (9), 59 (100). 

Synthesis of allyloxydimethylsilane 116 (122) 

The lithium alkoxide of allyl alcohol was prepared under by 

addition of 104 mL (0.150 mol) cf 1.44 M n-butyl lithium to a stirred 

solution of 8.7 g (0.150 mol) of allyl alcohol in 120 mL of ether cooled 

to -78°C. To this stirred solution was added 13.0 g (0.138 mol) of 

dimethylchlorosilane in a dropwise fashion. The final solution was 

stirred at -78°C for 15 minutes then warmed to room temperature and 

hydrolyzed with excess HgO. The ether layer was extracted with HgO, 

seperated, dried over NagSO^, and filtered. After removal of the solvent, 

distillation (68°-74°C) afforded 9.0 g (56%) of allyloxydimethylsilane 

116: ^H NMR (DCCl^) 6 0.19 (d, J = 3.00 Hz, 6H), 3.88-4.18 (m, 2H), 

4.38-4.68 (m, IH), 4.87-5.33 (m, 2H), 5.50-6.21 (m, IH); IR (neat) 2110 

cm"^ (SiH), 1100 cm~^ (SiOC); mass spectrum m/e (% rel. int.) 116 (2), 

115 (15), 101 (64), 99 (57), 85 (16), 75 (100), 73 (14), 71 (20), 61 

(32), 59 (75), 58 (9). The spectral properties matched those reported 

in the literature (121). 
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Decomposition of A-pentenyl-l-dimethylsilane 64 

A 1% (wt) solution of 64 (48.1 mg, 0.376 mmol) in benzene containing 

19,7 mg (0.135 mmol) of DTBP was heated for 4 hours. The products 

were separated and isolated by GC on a 9 ft, 20% OV-lOl/Chromosorb W 

column at 130°C. In addition to unreacted 64 (48%), the only major 

product containing silicon was 1,1-dimethyl-l-silacyclohexane 90 (114, 

115) (19%): NMR (DC,) 6 0.01 (s, 6H), 0.57 (t, J = 6.62, 4H), 

1.33-1.41 (m, 4H), 1.62-1.70 (m, 2H); NMR (D^Cg) S -3.08, 14.36, 

24.65, 30.29; mass spectrum m/e (% rel. int.) 128 (26), 113 (100), 

85 (99), 72 (19), 59 (53). The GC retention time and spectral properties 

exactly matched those of an authentic sample prepared by coupling 

pentane-l,5-dimagnesium bromide with dichlorodimethylsilane. 

Decomposition of 3-butenyldimethylsilane 59 

A 1% (wt) solution of 59 (0.140 g, 1.23 mmol) in t^butylbenzene 

containing 0.085 g (0.58 mmol) of DTBP was heated at 145°C for 12 hours. 

The products were analyzed and separated by GC on a 9 ft, 20% 

SE-30/Chromosorb W column at 80°C isothermal. Other than 59 (9), the 

only volatile silicon-containing product was 1,1-dimethyl-l-silacyclo-

petane 95 (114,115) 18%; NMR (D,C,) 6 0.04 (s, 6H), 0.50-0.55 (m, 
O O 

4H), 1.54-1.62 (m, 4H); ^^C NMR (D,Cg) 6 -1.78, 13.17, 27.42; mass 

spectrum m/e (% rel. int.) 114 (18), 100 (5), 99 (44), 97 (16), 87 (11), 

86 (100), 71 (26), 59 (24), 58 (54); the GC retention time and spectral 

properties exactly matched with an authentic sample of 95 prepared by 

coupling butane-l,4-dimagnesium bromide with dichlorodimethylsilane. 
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Attempted decomposition of 3-butenyldimethylsilane 59 with and AIBN 

A NMR scale portion of a 1% (wt) solution of 26.8 mg (0.235 mmol) 

of 59 in benzene containing 10.5 mg (0.043 mmol) of BP was heated at 

110°C for 30 hours. By NMR, the only silicon product presented was 59. 

A 1% (wt) solution of 19.2 mg (0.168 mmol) of 59 in benzene 

containing 5.4 mg (0.033 mmol) of AIBN was heated at 45°C for 16 hours. 

GC analysis showed only unreacted 59. 

Decomposition of allyldimethylsilane 60 

Diglyme solvent A solution of 0.10 g (1.00 mmol) of 60 and 0.07 

g (0.48 mmol) of DTBP in 0.2 mL of diglyme was heated at 140°C for 3 

hours. GC analysis on a 5 ft, 12% SE-30/Chromosorb W column at 140°C 

coupled with GCMS revealed one major silicon product along with unreacted 

60. Attempts to isolate a pure sample of the major product failed. By 

GCMS, the compound had a molecular formula equal to twice that of 60: 

200 (2), 185 (4), 157 (10), 131 (8), 129 (11), 128 (12), 127 (100), 

125 (7), 117 (9), 101 (16), 100 (18), 99 (88), 98 (40), 97 (10), 85 

(15), 83 (7), 73 (38), 72 (73), 71 (10), 60 (7), 59 (92), 58 (8), 57 (6). 

o-Dichlorobenzene solvent The reaction was carried out using 

the same quantities of 60 and DTBP in 0.3 mL of £-dichlorobenzene for 

2 hours at 140°C. Along with unreacted 60, the major silicons products 

were allyldimethylchlorosilane and the same dimer of 60 (GCMS) obtained 

in diglyme. The mass spectrum of allyldimethylchlorosilane exactly 

match that of an authentic sample (see the Experimental section). Also 

present in the mixture was chlorobenzene (GCMS). 
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tert-Butylbenzene solvent A 1% (wt) solution of 60 (76.0 mg, 

0.76 mmol) in tert-butyl benzene containing DTBP (34.0 mg, 0.232 mmol) 

was reacted for 12 hours at 145°C. The major silicon products were the 

"60 dimer" and unreacted 60. 

In all three solvents, the yield of the dimer product was too low 

to allow for isolation. 

Decomposition of cyclopropyldimethylsilane 103 

A small portion (1.286 g ) of a 1% (wt) solution of 68.0 g (0.680 

mmol) of 103 in tert-butylbenzene containing 29.0 mg (0.199 mmol) of 

DTBP was heated at 145°C for 12 hours. By GCMS, two major silicon 

products along with unreacted 103 were present. One had a molecular 

formula equal to twice that of 103: mass spectrum m/e (% rel. int.) 

200 (6), 199 (30), 173 (27), 172 (10), 171 (66), 159 (10), 158 (14), 

157 (100), 143 (16), 134 (8), 133 (62), 131 (22), 129 (8), 119 (25), 

117 (32), 109 (45), 103 (16), 97 (9), 95 (10), 73 (61), 71 (13), 66 (37), 

59 (57), 57 (13). The other product was assigned to cyclopropyldimethyl-

silanol (C^H^gSiO) based on its mass spectrum; m/e (% rel. int.) 116 

(1), 101 (49), 76 (7), 75 (100), 73 (6), 61 (50), 47 (19). 

Reduction of chloromethyldimethylvinylsilane 

The reduction of chloromethyldimethylchlorosilane was done using 

a literature procedure (204). Thus, 0.1466 g of a solution prepared 

from 0.1042 g (0.774 mmol) of chloromethyldimethylvinylsilane (Petrarch), 

0.3574 g (1.23 mmol) of freshly prepared tri-n-butyl hydride (TBTH) 

(205) and 7.4 mg (0.045 mmol) of azobisisobutyronitrile (AIBN) dissolved 
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in 7.0 mL of dry benzene was septum sealed in a quartz NMR tube. The 

NMR tube was suspended in a Rayonet and photolyzed (253 nm) for 1 hour. 

NMR showed a complete loss of the singlet at 2.75 ppm which corresponded 

to the -CH^-Cl protons. Also, the Intensity of the singlet at ca. 0.1 

increased. No other new signals were observed. 

When the reaction was repeated, using a NMR scale solution of 

27.7 mg (0.206 mmol) of chloromethyldimethylvinylsilane, 8.75 mg (0.301 

mmol) of TBTH, and 5.2 mg (0.032 mmol) of AIBN, under identical 

conditions with pentane (2.2 mL total) as the solvent, the vinyl region 

was monitored by NMR. There was no significant change in the pattern 

for the vinyl protons. Based on these observations, the compound formed 

was trimethylvinylsilane. 

Decomposition of (3-butenyl)-l,l,2,2-tetramethyldisilane 62 

A 1% (wt) solution of 62 (51.1 mg, 0.297 mmol) in benzene containing 

17.0 mg (0.116 mmol) of DTBP was heated at 145°C for 1 hour. Separation 

and isolation of the products by GC was performed on a 9 ft, 20% OV-

101/Chromosorb W column at 130°C. In addition to unreacted 62 (11%), 

the only silicon-containing volatile product was 1,1,2,2-tetramethyl-

1,2-disilacyclohexane 107 (118) (23%): NMR (DCCl?) 6 0.05 (s, 12H), 

0.68-0.72 (m, 4H), 1.54-1.59 (m, 4H); NMR (DCCl ) 6 -3.98, 17.09, 

26.24; m/e (% rel. int.) 173 (12), 172 (M+, 62), 157 (59), 144 (22), 

129 (37), 116 (46), 99 (34), 98 (21), 97 (100), 85 (39), 73 (74), 59 

(48). 
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Decomposition of allyl-l,l,2,2-tetramethyldisilane 61 

A 1% (wt) solution of 61 (25.2 mg, 0.159 mmol) in benzene containing 

7.1 mg (0.049 mmol) DTBP was heated at 145°C for 1 hour. GC separation 

and isolation of the products was carried out on a 15 ft, 20% OV-

101/Chromosorb W column at 130°C. In addition to 61 (14%), the only 

volatile silicon-containing product was l,l,2,2-tetramethyl-l,2-disila-

cyclopentane 110 (118) (13%): NMR (DC,) 6 0.12 (s, 12H), 0.70 

(t, J = 6.77 Hz, 4H), 1.73 (pentet, J = 6.77 Hz, 2H); NMR (D^D^) 

6 -4.11, 18.96, 22.92; mass spectrum m/e (% rel. int.) 159 (10), 158 

(57), 143 (40), 131 (10), 130 (56), 117 (43), 116 (43), 115 (100), 99 

(19), 85 (26), 83 (15), 73 (87), 72 (29), 59 (75). The spectral 

properties matched those reported in the literature (118,206). 

Decomposition of vinyl-l,l,2,2-tetramethyldisilane 111 

A 1% (wt) solution of 34.5 mg (0.240 mmol) of 111 in tert-butyl 

benzene containing DTBP (10.9 mg, 0.075 mmol) was heated at 145°C for 

1 hour followed by GC analysis which revealed a complete lose of 111. 

By GCMS, a compound with twice the molecular formula of 111 was formed: 

mass spectrum m/e (% rel. int.) 288 (2), 229 (9), 171 (15), 156 (7), 

155 (40), 141 (16), 131 (7), 129 (8), 117 (27), 116 (18), 97 (20), 85 

(10), 74 (8), 73 (100), 59 (31). 

Decomposition of 4-dimethylsiloxy-l-butene 113 

A 1% (wt) solution of 113 (0.63 g, 4.85 mmol) in t-butylbenzene 

containing 0.20 g (1.37 mmol) of DTBP was heated at 145°C for 1 hour. 

GC isolation (10 ft, 15% OV-lOl/Chromosorb W, 120°C) afforded 113 (14%) 
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and 2,2-dimethyl-2-silaoxacyclohexane 113 (120,121) (21%): NMR 

(60 MHz, DCCl?) 5 0.05 (s, 6H), 0.55 (broadened t, J = 8 Hz, 2H), 1.22-

1.88 (m, 4H), 3.72 (broad t, J = 5.8 Hz, 2H); m/e (% rel. int.) 130 

(M+, 14), 115 (100), 87 (74), 61 (22), 59 (20), 47 (10). The NMR 

spectrum matched that previously reported (120). 

Dibenzoylperoxide (BP) decomposition of 4-dimethylsiloxy-l-butene 113 

A solution of 88.0 mg (0.677 mmol) of 113 and 38.0 mg (0.157 mmol) 

of BP dissolved in 352 mg of o-dichlorobenze was heated at 110°C for 

3.5 hours and monitored by NMR. NMR showed two multiplets (6 0.55 and 

Ô 1.20-1.90) and a new singlet in the silicon-methyl region (ca. 0.05) 

which were assigned to 115. The ratio of 113 to 115 was approximately 

5:1. 

Decomposition of allyloxydimethylsilane 116 

A 1% (wt) solution of 47.0 mg (0.405 mmol) of 116 in tert-butyl 

benzene containing DTBP (21.2 mg, 0.145 mmol) was heated at 145°C for 

10 hours. GC analysis showed a complete loss of 116. By GCMS a trace 

amount (<1%) of a compound having a molecular formula (CHSiO) consistent 

with that of 2,2-dimethyl-2-silaoxacyclopentane was present: mass 

spectrum m/e (% rel. int.) 116 (11), 102 (9), 101 (100), 99 (24), 88 

(38), 75 (7), 61 (11), 59 (17), 58 (37), 57 (10). 

Synthesis of l,2-diallyl-l,l,2,2-tetramethyldisilane 76 

l,2-Diallyl-l,l,2,2-tetramethyldisilane 76 was prepared by the 

method of Barton and Jacobi (3). To a stirred mixture of excess Mg 

turnings in 60 mL of dry THF under was added a small portion of allyl 
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bromide for initiation. The remainder of the allyl bromide (35.6 g, 

0.294 mol total) and 21.1 g (0.113 mol) of l,2-dichloro-l,l,2,2-tetra-

methyldisilane were dissolved in 90 mL of dry THF and added dropwise to 

the stirred solution. After 12 hours, the reaction mixture was 

hydrolyzed with excess H^O and transferred to a separatory funnel 

containing 250 mL of pentane. The pentane layer was extracted with HgO, 

separated, dried over NagSO^, and filtered. After removal of the solvent, 

distillation (112°-118°C) afforded 20.8 g (93%) of 1,2-diallyl-l,1,2,2-

tetramethyldisilane 76 (3): ^H NMR (DCCl^) 6 0.03 (s, 12H), 1.53 

(d, J = 8.00 Hz, AH), 4.60-5.00 (m, 4H), 5.43-6.13 (m, 2H); mass 

spectrum m/e (% rel. int.) 198 (2), 159 (41), 158 (90), 157 (100), 

141 (40), 131 (62), 129 (100), 117 (99), 115 (52), 99 (68), 97 (42), 

85 (50), 83 (50), 73 (99), 59 (99), 58 (72). 

Vacuum pyrolysis of l,2-diallyl-l,l,2,2-tetramethyldisilane 76 

Compound 76, 9.20 g (46.5 mmol) was slowly distilled at 25°C 

(IX 10"^ mm Hg) through a quartz tube packed with chips and heated to 

840°C. The pyrolysate was collected in a trap cooled with liquid 

nitrogen and represented an 80% mass recovery. Distillation (117°-

123°C) of the pyrolysate gave 4.36 g (60%) of l,l,3,3-tetramethyl-l,3-

disilacyclopentene 76 as the only product. The spectra of 76 matched 

that reported by Barton and Jacobi (3): ^H NMR (C^D^O) 6 -0.33 (s, 2H), 

0.16 (s, 12H), 6.98 (s, 2H); NMR (D^D^O) 6 -3.68, 0.28, 156.19; 

mass spectrum m/e (% rel. int.) 156 (16), 143 (7), 142 (16), 141 (100), 

113 (7), 99 (5), 83 (5), 73 (14), 69 (5), 63 (8), 59 (11). 
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Synthesis of l-allyl-3-vinyl-l,l,3,3-tetramethylclisiloxane 133 

To a stirred solution of 11.0 g (54.0 mmol) of 1,3-dichloro-

1,1,3,3-tetramethyldisiloxane (Petrarch) in ether under N was 

added 250 mL (54.0 mmol) of 0.22 M allylmagneism bromide in ether 

very slowly. This mixture was stirred for 45 minutes at room 

temperature then cooled to -78°C. Vinyllithium (Alfa), 25 mL (60.0 

mmol) of 2.4 M, was then added in a dropwise fashion. The final 

mixture was then allowed to warm to room temperature and was stirred 

for 3 hours then hydrolyzed with excess HgO. The ether layer was 

extracted with H2O, separated, dried over NagSO^, and filtered. 

After solvent removal, the residue was distilled (148°-155°C) to 

afford 3.0 g (28%) of l-allyl-3-vinyl-l,l,3,3-tetramethyldisiloxane 

133 (133): NMR (DCCl,) 6 0.07 (s, 6H), 0.15 (s, 6H), 1.55 (d, 

J = 9.0 Hz, 2H), 4.67-5.08 (m, 2H), 5.40-6.30 (m, 4H); NMR 

(DCCl^) 6 0.14, 0.52, 26.52, 113.39, 131.64, 134.46, 139.63; IR 

(neat) 1065 cm~^ (SiOSi); mass spectrum m/e (% rel. int.) 160 (15), 

159 (100), 157 (17), 149 (37), 134 (9), 133 (69), 119 (22), 117 (12), 

75 (10), 73 (29), 72 (9), 59 (37), calculated for C^Hg^Sig m/e 

200.10528, measured m/e 200.10546. 

Synthesis of l,3-diallyl-l,l,3,3-tetramethyldisiloxane 140 

To a stirred mixture of excess Mg turnings in 75 mL of ether 

under was added a small portion of ally! chloride for initiation. 

The remainder of the allyl chloride (5.7 g, 74.3 mmol total) and 

5.0 g (24.8 mmol) of l,3-dichloro-l,l,3,3-tetramethyldisiloxane 
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(Petrarch) were dissolved in 50 mL of ether and were added dropwise 

to the stirred solution. After having stirred for 10 hours, the 

reaction mixture was hydrolyzed with excess HgO. The ether layer 

was extracted with HgO, separated, dried over NagSO^, and filtered. 

After removal of the solvent, distillation (175°-180°C) of the 

residue afforded 3.9 g (73%) of l,3-diallyl-l,l,3,3-tetramethyl-

disiloxane 140 (135): NMR (DCCl^) 6 0.06 (s, 12H), 1.53 (d, 

J = 7.8 Hz, 4H), 4.50-5.00 (m, 2H), 5.43-6.13 (m, IH); NMR 

(DCCl ) 6 0.01, 26.50, 113.37, 134.44; IR (neat) 1069 cm"^ (SiOSi); 

mass spectrum m/e (% rel. int.) 199 (M-15, 1%), 175 (10), 174 (21), 

173 (100), 157 (14), 134 (14), 133 (96), 131 (21), 119 (14), 117 (11), 

73 (43), 66 (29), 59 (34), calculated for CgH.gSigO m/e (M-15) 

199.09745, measured m/e 199.09819. 

Vacuum pyrolysis of l-allyl-3-vinyl-l,l,3,3-tetramethyldisiloxane 133 

A slow distillation of 0.1839 g (1.14 mmol) of 133 was carried 

out at 25°C (1 X 10~^ mm Hg) through a quartz tube packed with 

quartz chips and heated to 840°C. The pyrolysate was collected 

in a trap cooled with liquid nitrogen and represented an 81% mass 

recovery. Analysis of the pyrolysate by GC revealed two major 

products along with unreacted 133 (34%). A trace amount (ca. 3%) 

of hexamethylcyclotrisiloxane (Cy) was also present (identified by 

GCMS). The two major products were isolated by preparative GC on 

a 15 ft, 20% OV-lOl/Chromosorb W column at 130°C. They were 

identified as 3,3,5,5-tetramethyl-3,5-disila-4-oxycyclopentene 
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134 (18%) and 4,4,6,6-tetramethyl-4,6-disila-5-oxycyclohexene 135 

(15%). The spectra for both compounds are given below. 

3.3.5.5-Tetramethyl-3,5-disila-4-oxycyclopentene 134 NMR 

(CLD.O) 6 0.15 (s, 12H), 7.17 (s, 2H); NMR (C^D.O) 6 0.60, 

154.73; IR (neat) 940 cm~^ (SiOSi); mass spectrum m/e {% rel. int.) 

158 (8), 145 (9), 144 (16), 143 (100), 117 (7), 83 (5), 73 (19), 

71 (6), 59 (7), 51 (12), calculated for C,H.̂ SiO m/e 158.05833, 

measured m/e 158.05822. Elemental analysis calculated for C^H^^Si^O: 

C, 45.50; H, 8.93. Found: C, 45.96; H, 8.72. 

4.4.6.6-Tetramethyl-4,6-disila-5-oxycyclohexene J.35 NMR 

(CgD ) Ô 0.12 (s, 6H), 0.21 (s, 6H), 1.32 (d, J = 4.99 Hz collapses 

to broad s with hv at 6.8, 2H), 5.64 (d, J = 14.00 Hz collapses to m 

with hv at 6.8, IH), 6.75-6.83 (m, collapses to d with hv at 1.32, 

J = 14.00 Hz, IH); NMR (CLOgO) 6 0.65, 1.09, 19.45, 126.97, 

146.38; IR (neat) 986 cm~^ (SiOSi); mass spectrum m/e (% rel. int.) 

172 (20), 159 (11), 158 (21), 157 (100), 131 (11), 129 (18),^117 

(6), 103 (14), 73 (22), 72 (6), 71 (18), 66 (9), 59 (17), 52 (6); 

calculated for C^H^^SigO m/e 172.07398, measured m/e 172.07334. 

Elemental analysis calculated for CyH^^SigO: C, 48.77; H, 9.37. 

Found: C, 48.67; H, 9.15. 

Vacuum pyrolysis of l,3-diallyl-l,l,3,3-tetramethyldisiloxane 140 

A slow distillation of 0.3812 g (1.78 mmol) of 140 was done at 

25°C (1 X 10"^ mm Hg) through a quartz tube packed with quartz chips 

and heated to 840°C. The pyrolysate was collected in a trap cooled 

with liquid nitrogen and represented an 80% mass recovery. GC 
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analysis revealed the presence of two major products along with 

unreacted 140 (26%). A third product, which was present in only 

a trace amount (<2%), was identified as l,l,3,3-tetramethyl-l,3-

disilacyclobutane 118 based on comparison of its mass spectrum with 

that of the known compound (93): m/e (% rel. int.) 144 (23), 130 

(14), 129 (100), 103 (11), 85 (35), 73 (10), 59 (18). The two major 

products were isolated by preparative GC on a 15 ft, 20% OV- " 

lOl/Chromosorb W column at 130°C and were identified as 3,3,5,5-

tetramethyl-3,5-disila-4-oxycyclopentene 134 (18%) and 4,4,6,6-

tetramethyl-4,6-disila-5-oxychlohexene 135 (20%). All spectra 

properties and GC retention times exactly matched those of 134 and 

135 produced from 133. 

Vacuum pyrolysis of 1,2-divinyl-tetramethyldisiloxane 138 

A slow distillation of 0.1021 g (0.549 mmol) of 138 (Petrarch) 

was carried out at 25°C (1 X 10"^ mm Hg) through a quartz tube 

packed with quartz chips and heated to 840°C. The pyrolysate, 

represented by an 85% mass recovery, was collected in a trap cooled 

by liquid nitrogen. Analysis by GC showed quantitative recovery of 

138. 

Synthesis of l-allyl-2-(3-butenyl)-l,l,2,2-tetramethyldisilane 142 

To a stirred solution of 10.0 g (53.8 mmol) of 1,2-dichloro-

1,1,3,3-tetramethyldisilane in 15 mL of dry THF under was added 

200 mL (55.0 mmol) of 0.66 M 3-butenylmagnesium bromide in dry THF 

very slowly. This mixture was stirred for 20 minutes after which 
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time 200 mL (55.0 mmol) of 0.66 M allylmagnesium bromide in THF was 

added in a dropwise fashion. The final reaction mixture was stirred 

for 8 hours then hydrolyzed with excess HgO and transferred to a 

separatory funnel containing 100 mL of pentane. The pentane layer 

was extracted with HgO, separated, dried over Na^SO^, and filtered. 

After removal of the solvent, distillation of the residue afforded 

a fraction between 105°-125°C/30 mm Hg that contained 3.0 g (26% yield 

by GC) of l-allyl-2-(3-butenyl)-l,l,2,2-tetramethyldisilane 142. 

Pure 142 could be isolated by preparative GC on a 9 ft, 20% SE-

30/Chromosorb W column between 130°-150°C: ^H NMR (DCCl^) 6 0.06 

(s, 6H), 0.07 (s, 6H), 0.68-0.73 (m, 2H), 1.60 (d, J = 8.11 Hz, 2H), 

2.03-2.10 (m, 2H), 4.80-5.03 (m, 4H), 5.71-5.95 (m, 2H); NMR 

(DCCl ) 6 -4.11, -3.76, 14.50, 22.98, 28.73, 112.71, 112.85, 135.30, 

141.73; mass spectrum m/e (% rel. int.) 171 (M-41, 44%), 131 (9), 

129 (15), 117 (27), 99 (14), 97 (55), 85 (39), 73 (98), 71 (9), 

59 (100), calculated for CgH^^Si m/e (M-15) 171.10253, measured 

m/e 171.10237. Elemental analysis calculated for C^^Hg^Sig: C, 

62.17; H, 11.41. Found: C, 61.12; H, 11.33. 

Synthesis of l-allyl-2-vinyl-l,1,2,2-tetramethyldlsilane 168 

To a stirred mixture of excess Mg turnings and 10.0 g (54.0 

mmol) of 1,2-dichlorodisilane in 60 mL of dry THF under was added 

a small portion of allyl bromide for initiation. The remainder of 

the allyl bromide (6.5 g, 54.0 mmol total) was dissolved in 100 mL 

of dry THF and added dropwise to the stirred solution. After 12 
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hours, 11.6 g (108.0 mmol) of vinyl bromide dissolved in 40 mL of 

dry THF was added and stirring continued for 3 hours. The mixture 

was hydrolyzed with H^O then transferred to a separatory funnel 

containing 150 mL of pentane. The pentane layer was extracted with 

H2O, seperated, dried over NagSO^, and filtered. After solvent 

removal, the residue was distilled (102°-109°C/100 mm Hg) to afford 

3.0 g (30%) l-allyl-2-vinyl-l,l,2,2-tetramethyldisilane 168 (141): 

NMR (DCClj) 5 0.05 (s, 6H), 0.11 (s, 6H), 1.60 (d, J = 7.40 Hz, 

2H), 4.80-4.87 (m, 2H), 5.63 (d of d, J = 3.91 Hz, J^rans = 

20.01 Hz, IH), 5.70-5.85 (m, IH), 5.94 (d of d, = 3.91 Hz, 

Jcis = 14.59, IH), 6.12-6.23 (m, IH); NMR (DCCl^) 5 -4.46, 

-4.08, 22.73, 112.75, 131.06, 135.28, 138.92; mass spectrum m/e 

(% rel. int.) 184 (1), 169 (16), 143 (28), 99 (9), 85 (17), 83 (37), 

74 (9), 73 (100), 71 (10), 59 (84), calculated for Ĉ Hĝ Sig m/e 

184.11036, measured m/e 184.11041. 

Vacuum pyrolysis of l-allyl-2-(3-butenyl)-1,1,2,2-tetramethyldisilane 

142 

A slow distillation of 0.1230 g (0.580 mmol) of 142 was carried 

out at 25°C (1 X 10"^ mm Hg) through a quartz tube packed with 

quartz chips and heated to 760°C. The pyrolysated was collected 

in a trap cooled with liquid nitrogen and represented a 61% mass 

recovery. Four products along with unreacted 142 (22%) could be 

isolated by preparative GC on a 9 ft, 20% SE-30/Chromosorb W column 

at 130°C. The compounds were identified as 1,1,3,3-tetramethyl-
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1,3-dlsilacyclohexene 143 (26%) (137), l,l,3,3-tetramethyl-l,3-di-

silacyclopentene 78 (27%) (3), l,3-trimethyl-l,3-disilacyclopentene 

144 (8%), and l,l,3,3,5-pentamethyl-l,3-disilacyclopentene 145 

(4%). All spectra properties of 78 matched those of this compound 

produced from 76. The spectra of 143, 144, and 145 are given below. 

l,l,3,3-Tetramethyl-l,3-disilacyclohexene 143 The spectra 

of 143 matched that reported by Barton and Wulff (137). NMR 

(CLDgO) 6 -0.16 (s, 2H), 0.04 (s, 6H), 0.05 (s, 6H), 1.38 (d of d, 

3 = 1.46 Hz, J = 5.40 Hz collapses to broad s with hv at 6.74, 
am ax ^ 

2H), 5.50 (broad d, J = 14.0 Hz collapses to broad t with hv at 6.74, 

J - 1.46 Hz, IH), 6.72 (d of t, = 5.40 Hz, J = 14.0 Hz, IH); 

NMR 6 -0.92, -0.43, 0.82, 19.13, 130.18, 146.22; mass spectrum 

m/e (% rel. int.) 170 (23), 157 (7), 156 (17), 155 (100), 129 (9), 

127 (26), 115 (7), 113 (9), 95 (21), 85 (8), 83 (8), 73 (25), 71 

(8), 59 (30), 55 (8). 

Ha hv at 6.74 

Hx 

J = J 
ax xa 

J = J 
am ma 
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1,3,3-Trimethyl-l,3-disilacyclopentene 144 H NMR (CjDgO) 

6 -0.41 (d of d, = 3.00 Hz, = 14.54 Hz collapses to d with 

hv at 4.40, IH), -0.10 (d of d, = 4.05 Hz, = 14.54 Hz 

collapses to d with hv at 4.40, IH), 0.13 (s, 3H), 0.15 (s, 3H), 

0.19 (d, = 3.5 Hz, 3H), 4.38-4.44 (m, IH), 7.04 (d, J = 15.10 Hz, 

IH), 7.14 (d, J = 15.10 Hz, IH); NMR (C D^O) 6 -7.09, -2.38, 

-0.21, 0.38, 153.10, 158.14; IR (neat) 2116 cm~^ (SiH); mass spectrum 

m/e (% rel. int.) 142 (30), 129 (8), 128 (15), 127 (100), 99 (10), 

85 (10), 69 (8), 59 (10), calculated for C^H^^Sig m/e 142.06341, 

measured m/e 142.06392. Elemental analysis for CgH^^Si2 calculated: 

C, 50.62; H, 9.93. Found; C, 50.63; H, 9.96. 

3c.Hx 

Si' 

Jab = Jba 

1,1,3,3,4-Pentamethy1-1,3-disilacyclopentene 145 'H NMR 

(CLDgO) 6 -0.29 (s, 2H), 0.08 (s, 6H), 0.11 (s, 6H), 1.91 (d, J = 

1.70 Hz, 3H), 6.40 (broad unresolved d, IH); mass spectrum m/e 

(% rel. int.) 170 (11), 157 (8), 156 (18), 155 (100), 127 (5), 115 

(5), 95 (5), 73 (14), 70 (5), 69 (5), 57 (5). 
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Vacuum pyrolysis of l-allyl-2-vinyl-l,l,2,2-tetraniethyldisilane 168 

A vacuum pyrolysis of 168 was done by slowly distilling 0.3165 g 

(1.72 mmol) of the compound at 25°C (1 X 10"^ mm Hg) through a quartz 

tube packed with quartz chips and heated to 76Q°C. The pyrolysate 

was collected in a trap cooled with liquid nitrogen and represented 

77% mass recovery. Three products, along with unreacted 168 (14%), 

could be isolated by preparative GC on a 15 ft, 20% OV-lOl/Chromosorb 

W column at 130°C. The compounds were identified as 1,1,3,3-tetra-

methyl-l,3-disilacyclopentene 78 (3%) (3), l,l,3-trimethyl-l,3-sila-

cyclopentene 144 (5%), and allylvinyldimethylsilane 172 (1%). All 

spectra properties of 78 and 144 matched those of these compounds 

produced from 76 and 142, respectively. Compound 172 was identified 

based on its spectra: NMR (C^DgO) ô 0.00 (s, 6H), 1.53 (d, J = 

8.0 Hz, 2H), 4.53-5.02 (m, 2H), 5.22-6.25 (m, 4H); mass spectrum 

m/e (% rei. int.) 126 (2), 111 (4), 98 (6), 87 (4), 86 (9), 85 (100), 

60 (5), 59 (76). 

Vacuum pyrolysis of l,2-divinyl-l,l,2,2-tetramethyldisilane 174 

A slow distillation of 0.3446 g (2.03 mmol) of 174 was done at 

25°C (1 X 10"^ mm Hg) through a quartz tube packed with quartz chips 

and heated to 800°C. The pyrolysate was collected in a trap cooled 

with liquid nitrogen and represented an 84% mass recovery. Along 

with unreacted 174 (33%), GC analysis showed a complex mixture of 

products. One of the products was isolated by preparative GC on 
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a 15 ft, 20% OV-lOl/Chromosorb W column at 130°C and was identified 

as l,l,3-trimethyl-l,3-disilacyclopentene 144 (5%). All of the 

spectral properties were identical to that of 144 produced from 142. 

Another compound was isolated and identified as divinyldimethylsilane 

(11%) (207): NMR (C^D^Q) 6 0.14 (s, 6H), 5.40-6.34 (m, 6H); 

mass spectrum m/e (% rel. int.) 98 (10), 97 (P-15, 100), 85 (10), 

71 (45), 59 (28), 55 (10). Two other compounds, for which yields 

were obtained, were identified by GCMS as being trimethylvinylsilane 

(5%) (207): m/e (% rel. int.) 100 (10), 86 (9), 85 (100), 73 (13), 

72 (8), 59 (83), 55 (6) and dimethylvinylsilane (6%) :  m/e (% rel. 

int.) 86 (12), 85 (6), 71 (35), 69 (13), 59 (28), 58 (100), 55 (11), 

53 (13). Other compounds present in the mixture that were 

identifiable by GCMS were l,l,3,3-tetramethyl-l,3-disilacyclobutane 

118 and l,l,3,3-tetramethyl-l,3-disilacyclopentene 78. 

Vacuum pyrolysis of trimethylvinylsilane 

A slow distillation of 0.1071 g (1.071 mmol) of trimethylvinyl

silane was carried out at 25°C (1 X 10"^ mm Hg) through a quartz 

tube packed with quartz chips and heated to 760°C. The pyrolysate 

was collected in a trap cooled by liquid nitrogen and represented 

an 84% mass recovery. Analysis by GO showed quantitative recovery 

of trimethylvinylsilane. 

Vacuum pyrolysis of dimethyldivinylsilane 

A slow distillation (25°C, 1 X 10"^ mm Hg) of 90.7 mg (0.810 

mmol) of dimethyldivinylsilane was done through a quartz tube heated 
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to 760°C and the pyrolysate collected in a trap cooled by liquid 

nitrogen. Analysis of the pyrolysate (83% mass recovery) by GC 

revealed quantitative recovery of unreacted dimethyldivinylsilane. 

Synthesis of l-allyl-2-phenyl-l,l,2,2-tetramethyldisilane 175 

To a stirred suspension of excess Mg turnings and 10.0 g (53.8 

mmol) of l,2-dichloro-l,l,2,2-tetramethyldisilane in 125 mL of dry 

THF under was added a small portion of bromobenzene for initiation. 

The remainder of the bromobenzene (8.4 g, 53.8 mmol total) was 

dissolved in dry 20 mL THF and added dropwise to the stirred solution. 

After 12 hours, 6.5 g (53.8 mmol) of allyl bromide was dissolved 

in 20 mL of dry THF and added dropwise to the solution. The final 

mixture was stirred for 4 hours then hydrolysed with excess H^O 

and transferred to a separatory funnel containing 100 mL of pentane. 

The pentane layer was extracted with HgO, separated, dried with 

NagSO^, and filtered. Removal of the solvent followed by distillation 

(138°-145°C/0.5 mm Hg) of the residue gave 6.1 g (48%) of l-allyl-2-

phenyl-l,l,2,2-tetramethyldisilane 175: ^H NMR (DCCl^) 6 0.07 (s, 

6H), 0.37 (s, 6H), 1.50 (d, J = 7.9 Hz, 2H), 4.53-4.97 (m, 2H), 

5.33-5.97 (m, IH), 7.20-7.50 (m, 5H); NMR (DCCl^) 6 -4.36, 

-3.51, 22.63, 112.89, 127.85, 128.43, 133.83, 135.07, 139.36; mass 

spectrum m/e (% rel. int.) 234 (3), 194 (16), 193 (74), 135 (100), 

136 (13), 107 (8), 105 (11), 73 (18), 59 (16), calculated for 

^13^22^^2 234.12601, measured m/e 234.12668. Elemental analysis 

calculated for C^^^HggSi: C, 66.58; H, 9.48. Found: C, 65.85; 

H, 9.52. 
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Vacuum pyrolysis of l-allyl-2-phenyl-l,1,2,2-tetramethyldisilane 175 

Compound 175, 0.3354 (1.43 mmol) was slowly distilled at 350°C 

(1 X 10"^ mm Hg) through a quartz tube packed with quartz chips and 

heated to 770°C. The pyrolysate was collected in a trap cooled 

with liquid nitrogen and represented an 80% mass recovery. GC 

analysis showed one major product along with unreacted 175 (35%). 

Based on GCMS, one of the minor products (<3%) was identified as 

dimethylphenylsilane (184): m/e (% rel. int.) 136 (43), 135 (26), 

122 (12), 121 (100), 105 (18), 59 (10), 58 (93), 53 (17). The major 

product was isolated by preparative GC on a 5 ft, 12% Se-30/Chromosorb 

W column at 150°C and identified as l,l,3-trimethyl-l,3-disilaindane 

176 (57%). The spectra of 176 is given below. 

l,i,3-Trimethyl-l,3-disilaindane 176 NMR (DCCl^) g -0.04 

(d of d, J = 3.30 Hz, = 14.50 Hz, IH), 0.30 (d of d, 3^^ = 

3.90, = 14.50 Hz, IH), 0.37 (s, 3H), 0.40 (s, 3H), 0.48 (d, = 

3.80 Hz, 3H), 4.80 (sixtet, J = 3.70 Hz, IH), 7.44-7.71 (m, 4H); 

^^C NMR (DCCl^) 5 -5.31, -2.27, 0.24, 0.72, 128.67, 128.85, 131.93, 

132.64, 147.27, 150.95; IR (neat) 2112 cm"^ (SiH); mass spectrum 

me/ (% rel. int.) 192 (17), 179 (8), 178 (19), 177 (100), 175 (11), 

161 (5), 145 (6), 105 (8), 88 (15), 81 (7), 59 (4), calculated for 

^10^16^^^ m/e 192.07906, measured m/e 192.07950. Elemental analysis 

calculated for C^gH^^Si^: C, 62.42; H, 8.40. Found: C, 62.10; 

H, 8.20. 
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Butadiene-flow pyrolysis of l-allyl-2-phenyl-l,1,2,2-tetramethyl-

disilane 175 

A flow pyrolysis was done by dripping 50 ml of 175 through a 

vertical quartz tube packed with quartz chips and heated to 550°C. 

Butadiene (35 mL/min) was used as the carrier gas. The pyrolysate 

was collected in a trap and cooled to -78°C. Analysis by GC showed 

a very complex mixture of products of which none were isolable. 

Butadiene-flow pyrolysis of l-allyl-2-vinyl-l,1,2,2-tetramethy1-

disilane 168 

A flow pyrolysis was performed by dripping 60 ml of 168 through 

a vertical quartz tube packed with quartz chips and heated to 600°C. 

Butadiene was used as the carrier gas at a flow-rate of 35 mL/min. 

The pyrolysate was collected in a trap cooled to -78°C and GC 

analysis revealed a complex mixture of non-isolable products. 
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Synthesis of dimethylsilylphenylacetylene 181 

The procedure used to prepare dimethylsilylphenylacetylene was 

similar to the method used by Eaborn and Walton (149) to prepare 

trimethylsilylphenylacetylene. A solution of 30.0 g (0.294 mol) of 

phenylacetylene (Aldrich) was dissolved in 150 mL of ether under Ng 

and cooled to -78°C. To this stirred solution was added 140 mL 

(0.294 mol) of 2.1 M n-butyl lithium in hexane in a dropwise fashion. 

The solution was allowed to warm to room temperature then heated to 

reflux for 15 minutes after which time 37.8 g (0.400 mol) of dimethyl-

chlorosilane was added dropwise. Refluxing was continued for 4 hours. 

The reaction mixture was then cooled to room temperature and hydrolyzed 

with excess K^O. The organic layer was extracted with H^O, dried over 

Na^SO^, and filtered. The solvent was removed and the residue distilled 

(120°-123°C/15 mm Hg) to afford 40.0 g (85%) of dimethylsilylphenyl

acetylene 181: NMR (DCClj) 6 0.33 (d, J = 4.0 Hz, 6H), 4.30 

(heptet, J = 4.0 hz, IH), 7.13-7.56 (m, 5H); NMR (DCCl^) 6 -2.87, 

91.16, 106.60, 123.07, 128.26, 128.70, 132.04; IR (neat) 2162 cm"^ 

(C5C), 2141 cm~^ (SiH); mass spectrum m/e (% rel. int.) 160 (36), 

146 (14), 145 (100), 129 (12), 105 (11), 58 (10), 53 (10), calculated 

for Cj^QH|2Si m/e 160.07083, measured m/e 160.07086. Elemental analysis 

calculated for C^gH^gSi: C, 74.91; H, 7.56. Found: C, 73.61; H, 

7.54. 
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Synthesis of cis-2-phenyl-l-dimethylsilylethylene 182 

The reduction of dimethylsilylphenylacetylene to cis-2-phenyl-

1-dimethylsilylethylene was accomplished using the procedure of Eisch 

and Foxton (150). To a stirred solution of 125 ml (0.125 mol) of 1.0 M 

diisobutylaluminum hydride in heptane and 10.7 g (0.125 mol) of 

N-methylpyrrolidine under was added 20.0 g (0.125 mol) of dimethyl

silylphenylacetylene 181 in a dropwise fashion. The final solution 

was heated to 70°C for 12 hours then 100°C for 10 additional hours. 

After cooling to room temperature, the reaction mixture was poured into 

a flask containing 200 mL of ice-water and then diluted with 100 mL 

of hexane. This slurry mixture was stirred vigorously with a mechanical 

stirrer then filtered through celite and washed with hexane. The 

organic layer was separated, dried over NagSO^, and filtered. 

Distillation (116°-120°C/10 mm Hg) of the residue, after solvent 

removal, gave 19.3 g (95%) cis-2-phenyl-l-dimethylsilylethylene 182: 

NMR (DCClj) 6 0.20 (d, J = 3.79 Hz, 6H), 4.39-4.45 (m, IH), 5.85 

(d of d, J = 4.77 Hz, J = 15.10 Hz, IH), 7.27-7.43 (m, 6H); NMR 

(DCClj) 6 -3.09, 127.60, 128.08, 129.38, 139.63, 147.60; IR (neat) 

2116 cm~^ (SiH); mass spectrum m/e (% rel. int.) 162 (23), 148 (14), 

147 (100), 146 (8), 145 (46), 121 (27), 105 (16), 59 (17), 58 (41), 

53 (12), 51 (8), calculated for measured m/e 162.08621. 

Elemental analysis calculated for C^gH^^Si: C, 73.99; H, 8.71. Found: 

C, 73.64; H, 8.87. 
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Synthesis of cis-2-phenyl-l-ciimethylchlorosilylethylene 183 

To a stirred slurry of 15.4 g (74.1 mmol) of phosphorus penta-

chloride in 25 mL of hexane under was added a solution of 5.0 g 

(25.5 mmol) of cis-2-phenyl-l-dimethylsilylethylene 182 in 30 mL of 

hexane in a dropwise fashion. After having stirred for 1 hour, the 

reaction mixture was filtered through celite and washed with hexane. 

The hexane and phosphorus trichloride were removed by distillation at 

atmospheric pressure. Vacuum distillation (132°-137°C/5 mm Hg) of the 

residue from CaH2 afforded 11.5 g (77%) of cis-2-phenyl-l-dimethyl-

chlorosilylethylene 183: NMR (DCCl^) 6 0.41 (s, 6H), 5.93 (d, J = 

14.90 Hz, IH), 7,33-7.38 (m, 5H), 7.49 (d, J = 14.90 Hz, IH); NMR 

(DCClj) <5 3.43, 128.18, 128.24, 128.92, 139.05, 149.30; mass spectrum 

m/e (% rel. int.) 198 (M+2, 6%), 196 (M+, 17%), 183 (11), 181 (31), 

146 (14), 145 (100), 93 (12), 65 (15), 63 (18), calculated for 

CioHi3SiCl m/e 196.04751, measured m/e 196.04718. Compound 183 was 

too reactive to obtain a satisfactory combustion analysis. 

Synthesis of ci5-2-phenyl-l-(allyldimethylsilyl)ethylene 184 

To a stirred mixture of Mg turnings in 60 mL of dry THf under 

was added a small portion of allyl bromide for initiation. The 

remainder of the allyl bromide (3.6 g, 30.0 mmol total) and 5.0 g 

(25.5 mmol) of cis-2-phenyl-l-dimethylchlorosilylethylene J.83 were 

dissolved in 20 mL of THF and added dropwise to the stirred solution. 

After having refluxed for 12 hours, the reaction mixture was cooled 

to room temperature, hydrolyzed with excess H2O, then transferred to a 
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separatory funnel containing 100 mL of pentane. The pentane layer 

was extracted with H^O, separated, dried over NagSO^, and filtered. 

Removal of the solvent, followed by distillation (128°-133°C/4 mm Hg) 

of the residue afforded 4.1 g (80%) of cis-2-phenyl-l-(allyldimethyl-

silyDethylene 184: NMR (DCCl,) 6 0.13 (s, 6H), 1.64 (d, J = 8.11 

Hz, 2H), 4.87-4.92 (m, 2H), 5.74-5.90 (m, IH), 5.90 (d, J =15.1 Hz, 

IH), 7.25-7.46 (m, 5H), 7.50 (d, J = 15.1 Hz, IH); NMR (DCCl^) 

6 -1.77, 24.56, 113.16, 127.47, 127.96, 128.11, 130.99, 134.78, 140.24, 

147.56; mass spectrum m/e {% rel. int.) 202 (1), 162 (15), 161 (100), 

146 (9), 145 (62), 135 (29), 105 (9), 59 (55), calculated for C^^H^gSi 

m/e 202.11778, measured m/e 202.11851. Elemental analysis calculated 

for C^jH^gSi: C, 77.41; H, 8.98. Found: C, 77.35; H, 9.25. 

Vacuum pyrolysis of cis-2-phenyl-l-allyldimethylsilylethylene 184 

A slow distillation of 0.1879 g (0.93 mmol) of 184 was done at 

35°C (1 X 10"^ mm Hg) through a quartz tube packed with quartz chips 

and heated to 780°C. The pyrolysated was collected in a trap cooled 

with liquid nitrogen and represented a 65% mass recovery. Analysis by 

GC showed three major products along with unreacted 184 (5%). Isolation 

of the three compounds were done by preparative GC on a 5 ft, 12% SE-

30/Chromosorb W column at 150°C. One of the compounds was identified 

as styrene (4%): ^H NMR (DCCl,) 6 5.20 (d of d, = 2.0 Hz, J . = 
V yclii CIS 

11.0 Hz, IH), 5.70 (d of d, = 2.0 H, J^rans == 20.0 Hz, IH), 

6.40-7.50 (m, 6H). The other two were identified as 1,1-dimethyl-l-
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silaindene 185 (14%) (151) and trans-2-phenyl-l-allyldimethylsilyl-

ethylene 186 (37%). The spectra of each of these compounds is given 

below. 

1,1-Dimethyl-l-silaindene 185 The NMR of 185 matched that 

reported by Juvet and Barton (151). NMR (DCCl^) 5 0.38 (s, 6H), 

6.32 (d, J = 10.35, IH), 7.24-7.39 (m, 3H), 7.39 (d, J = 10.35 Hz, 

IH), 7.57 (d, J = 6.84 Hz, IH); NMR (DCCl,) 6 -4.01, 124.10, 

126.94, 129.71, 131.65, 132.42, 138.54, 149.24, 149.38; mass spectrum 

m/e (% rel. int.) 160 (40), 146 (14), 145 (100), 143 (12), 119 (8), 

117 (5), 105 (6), 93 (5), 53 (11); calculated for C^gH^gSi m/e 

160.07083, measured m/e 160.07108. 

trans-2-Phenyl-l-allyldimethylsilylethylene 186 ^H NMR (DCCl^) 

6 0.20 (s, 6H), 1.69 (d, J = 8.10 Hz, 2H), 4.65-5.10 (m, 2H), 5.43-6.20 

(m, IH), 6.42 (d, J = 20.0 Hz, IH), 6.95 (d, 3 = 20.0 Hz, IH), 7.15-

7.60 (m, 5H); mass spectrum m/e (% rel. int.) 202 (9), 162 (16), 161 

(100), 159 (8), 146 (9), 145 (56), 135 (31), 105 (9), 59 (71). 

Vacuum pyrolysis of 186 

A slow distillation of 55.8 mg (0.276 mmol) of 186 was done 

(25°C, 1 X 10"^ mm Hg) through a quartz tube packed with quartz chips 

and heated to 780°C. The pyrolysate was collected in a liquid nitrogen 

cooled trap and represented a 43% mass recovery. GC analysis showed 

184, 185, and 186 in a ratio of 1:2.5:5.4, respectively. 

When the pyrolysis of 184 was repeated under exactly the same 

condition, the ratio of 184 to 185 to 186 was 1:4:5.3 by GC. 
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Synthesis of (o-vinylphenyl)allyldimethylsilane 189 

To a stirred mixture of excess Mg turnings in 15 mL ether under 

Ng was added a solution of 1.5 g (8.2 mmol) of £-bromostyrene (Aldrich) 

and 1.1 g (8.17 mmol) of allyldimethylchlorosilane dissolved in 30 mL 

of ether. The final mixture was refluxed for 14 hours. After cooling 

to room temperature, the mixture was hydrolyzed with excess H^O then 

transferred to a separatory funnel containing 100 mL of pentane. The 

pentane layer was extracted with HgO, seperated, dried over NagSO^, 

and filtered. After removal of the solvent, 0.150 g (9%) (o-vinyl-

phenyDallyldimethylsilane 189 was isolated by preparative GC on a 

5 ft, 12% SE-30/Chromosorb W column at 180°C: NMR (DCCl^) 6 

0.30 (s, 6H), 1.78 (d, 7.8 Hz, 2H), 4.63-6.20 (m, 5H), 6.75-7.67 (m, 

5H); mass spectrum m/e {% rel. int.) 202 (4), 162 (18), 161 (100), 

159 (34), 145 (95), 133 (25), 105 (20), 59 (27), calculated for C^^HigSi 

m/e 202.11778, measured m/e 202.11751. 

Vacuum pyrolysis of (o^vinylphenyl)allyldimethylsilane 189 

A slow distillation of 0.1300 g (0.64 mmol) of 189 was carried 

out at 35°C (1 X 10"^ mm Hg) through a quartz tube packed with quartz 

chips and heated to 780°C. The pyrolysate was collected in a trap 

cooled with liquid nitrogen and represented a 68% mass recovery. 

The pyrolysate was a viscous yellow oil. GC analysis however, showed 

a product with a retention time that exactly matched that of 1,1-di-

methyl-l-silaindene 185 produced from 184. 
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Decomposition of cis-(difnethylsilyl)phenylethylene 182 

A 1% (wt) solution of 53.2 mg (0.328 mmol) of 182 in benzene 

containing 15.5 mg (0.106 mmol) of DTBP was heated at 1A5°C for 24 

hours but was checked after 3 hours and 8 hours. Analysis of the 

pyrolysate revealed that ca. 95% of 182 remained after 24 hours. A 

minor product (ca. 5%) was assigned to cis-g-styrenyldimethylsilanol 

(cis-PhCH=CHSiMe^OH) based on GCMS: m/e {% rel. int.) 178 (12), 147 

(27), 145 (13), 136 (13), 135 (26), 121 (32), 119 (11), 118 (46), 

117 (23), 109 (9), 100 (39), 91 (34), 85 (10), 65 (8), 59 (100), 58 

(33). However, it was not clear where it was a mixture. No other 

products were observed. 

Synthesis of 3-butenyltrimethylsilane 190 

The synthesis of 3-butenyltrimethylsilane was accomplished by 

the method of Rowley and Jarvie (153). To a stirred mixture of excess 

Mg turnings in 10 mL of dry THF under was added a small portion of 

l-bromo-3-butene for initiation. The remainder of the l-bromo-3-

butene (2.0 g, 14.8 mmol total) and 1.6 g (14.8 mmol) of trimethyl-

chlorosilane was dissolved in 20 mL of dry THF and added dropwise to 

the solution. After 10 hours, the reaction mixture was hydrolyzed 

with excess H^O then transferred to a separatory funnel containing 

50 mL of pentane. The pentane layer was extracted with HgO, separated, 

dried over NagSO^, and filtered. After removal of the solvent, 1.0 g 

(53%) of 3-butenyltrimethylsilane was isolated by preparative gas 

chromatography on 9 ft, 20% OV-lOl/Chromosorb W column at 130°C 190. 
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The NMR of 190 exactly matched that reported by Rowley and Jarvie (153); 

NMR (DCClg) 5 0.00 (s, 9H), 0.57-0.62 (m, 2H), 2.01-2.09 (m, 2H), 

4.86-5.02 (m, 2H), 5.81-5.95 (m, IH); NMR (DCCl?) 6 -1.60, 15.90, 

28.09, 112.65, 141.80; mass spectrum m/e (% rel. int.) 113 (M-15, 

28%), 85 (20), 74 (8), 74 (100), 59 (56), 58 (8), 55 (5). 

Vacuum pyrolysis of 3-butenyltrimethylsilane 190 

A slow distillation of 0.1054 g (0.823 mmol) of 190 was carried 

out at 25°C (1 X 10"^ mm Hg) through a quartz tube packed with quartz 

chips and heated to 760°C. The pyrolysate was collected in a trap 

cooled with liquid nitrogen. At 760°C, only ca. 10% decomposition of 

190 was observed by GC. Four compounds could be identified by GCMS 

to be the major components of the pyrolysate. The compounds were 

tetramethylsilane (TMS): m/e (% rel. int.) 88 (3), 74 (18), 73 (100), 

59 (4), 57 (4), 55 (5); vinyltrimethylsilane (207): m/e (% rel. int.) 

100 (9), 86 (8), 85 (100), 73 (12), 72 (9), 60 (5), 59 (70); ethyltri-

methylsilane: m/e (% rel. int.) 102 (2), 87 (11), 81 (8), 73 (57), 

67 (100), 59 (35), 55 (6), 54 (52), 53 (10); and 1,1,3,3-tetramethyl-

1,3-disilacyclobutane 118 (93): m/e (% rel. int.) 144 (29), 130 (15), 

129 (100), 113 (5), 101 (16), 73 (9), 59 (14), 57 (5). 

Vacuum pyrolysis of (3-butenyl)dimethylsilane 59 

A slow distillation of 0.1407 g (1.23 mmol) of 59 was done at 

25°C (1 X 10"^ mm Hg) through a quartz tube packed with quartz chips 

and heated to 840°C. The pyrolysate was collected in a trap cooled 

with liquid nitrogen and represented a 56% mass recovery. Analysis 
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of the pyrolysate by GC showed two major products along with unreacted 

59 (25%). A trace amount (<2%) of l,l,3,3-tetramethyl-l,3-disilacyclo-

butane 118 was also identified by GCMS to be present in the pyrolysate. 

The two major products were isolated by preparative GC on a 15 ft, 

20% OV-lGl/Chromosorb W column at 130°C. One of the products was 

identified as allyltrimethylsilane 120 (17%) (77,185). The NMR of 120 

matched that published by Fleming and Laugley (185): NMR (DCCl^) 

6 0.03 (s, 9H), 1.52 (d, J = 8.0 Hz, 2H), 4.60-5.01 (m, 2H), 5.43-6.05 

(m, IH); mass spectrum m/e (% rel. int.) 114 (10), 99 (20), 77 (18), 73 

(100), 71 (9), 59 (25). The other compound was identified as allyldi-

methylsilane 60 (4%). The NMR, mass spectrum and GC retention time of 

60 exactly matched that of an authentic sample. 

Vacuum pyrolysis of 2-(3-butenyl)-l,l,2,2-tetramethyldisilane 62 

Compound 62, 0.2041 g (1.19 mmol) was slowly distilled at 25°C 

—* 
(1 X 10" mm Hg) through a quartz tube packed with quartz chips and 

heated to 760°C. The pyrolysate was collected in a trap, cooled with 

liquid nitrogen and represented a 73% mass recovery. Only one new 

product, along with unreacted 62 (6%), was present in the pyrolysate 

according to GC analysis. The product was isolated by preparative GC 

on a 9 ft, 20% OV-lOl/Chromosorb W column at 130°C and was identified 

as 4-butenyldimethylsilane 59 (96%). All spectra properties and the 

GC retention time of 59 exactly matched that of an authentic sample. 

(See the Experimental section of this dissertation.) 
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Synthesis of di-(3-butenyl)methylsilane 214 

To a stirred mixture of excess Mg turnings in 50 mL dry THF 

undre was added first a small portion of 4-bromo-l-butene for 

initiation. The remainder of 6.0 g (44.8 mmol) of 4-bromo-l-butene for 

and 2.6 g (22.4 mmol) of methyldichlorosilane was dissolved in 20 mL 

of THF and added to the solution in a dropwise fashion. The final 

reaction mixture was stirred at room temperature for 15 hours then 

hydrolyzed with excess H^O and diluted with 50 mL of pentane. The 

pentane layer was extracted with H^O, separated, dried over Na^SO^, 

and filtered. After removal of the solvent, distillation (78°-87°C/30 

mm Hg) afforded 2.3 g (68%) di-(3-butenyl)methylsilane 214. ^H NMR 

(DCClj) (S 0.08 (d, J = 3.79 Hz collapses to s with hv at 3.82, 3H), 

0.67-0.75 (m, collapses to broad t with hv at 2.11, J = 3.3 Hz, 4H), 

2.07-2.15 (m, collapses to broad d with hv at 0.71, J = 6.0 Hz, 4H), 

3.80-3.84 (m, collapses to broad pentet with hv at 0.08, J = 2.8 Hz, 

IH), 4.88-5.04 (m, 4H), 5.81-5.94 (m, 2H); NMR (DCCl^) ô -6.15, 

12.05, 28.63, 113.14, 141.15; IR (neat) 2110 cm~^; mass spectrum m/e 

(% rel. int.) 139 (M-15, 6%), 126 (8), 111 (11), 100 (11), 99 (100), 

98 (21), 97 (65), 85 (9), 84 (10), 83 (14), 72 (8), 71 (65), 59 (26), 

55 (7), calculated for CgH^^Si (M-15) m/e 139.09430, measured m/e 

139.09470. 

Vacuum pyrolysis of di-(3-butenyl)methylsilane 214 

A slow distillation of 214 was done at 25°C (1 X 10"^ mm Hg) 

through a quartz tube packed with quartz chips and heated to the 
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desired temperature (below). The pyrolysate was collected in a liquid 

nitrogen cooled trap and was analyzed by GC. 

730°C Compound 214, 0.1128 g (0.732 mmol), was pyrolysed 

affording a 37% mass recovery. GC analysis showed a complex mixture 

of products from which allyldimethylsilane 60 was isolable by 

preparative GC on a 9 ft, 20% SE-30/Chromosorb W column at 100°C. 

The NMR, GC retention time, and mass spectrum of 60 exactly matched 

that of an authentic sample. Compound 198 and 199 were also present 

as well as two other isomeric compounds by GCMS. The identity of 198 

and 199 is based on comparison with that of the known compounds (137) 

(see the vacuum pyrolysis of 218). 

650°C Compound 214, 0.1205 g (0.782 mmol), was pyrolyzed 

giving a 79% mass recovery. Only about 5% to 10% decomposition of 

214 occurred at this temperature. However, the complexity of the mixture 

did not change. 

Synthesis of di-(3-butenyl)dimethylsilane 218 

To a stirred mixture of excess Mg turning in 50 mL of dry THF 

under was added first a small portion of 12.2 g (90.0 mmol) of 

4-bromo-l-butene for initiation. The remainder of the 4-bromo-l-

butene was dissolved in 60 mL of dry THF and added to the stirred 

mixture in a dropwise manner. Stirring at room temperature was 

continued for 7 hours followed by dropwise addition of 3.9 g (3.6 mmol) 

of dimethyldichlorosilane dissolved in 15 mL of dry THF. The final 

solution was refluxed for 14 hours, cooled to room temperature. 
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hydrolyzed with excess H^O, then diluted with 75 mL of pentane. The 

pentane layer was extracted with H2O, seperated, dried over NagSO^, 

and filtered. After removal of the pentane, distillation (85°-88°C/14 

mm Hg) of the residue afforded 3.2 g (63%) of 218: NMR (DCCl^) 

8 0.00 (s, 6H), 0.57-0.68 (m, 4H), 2.01-2.10 (m, AH), 4.86-5.02 (m, 

4H), 5.81-5.94 (m, 2H); NMR (DCCl,) 6 -3.22, 14.49, 28.03, 112.76, 

141.80; mass spectrum m/e (% rel. int.) 153 (M-15, 2%), 114 (13), 

113 (100), 99 (9), 97 (12), 86 (6), 85 (53), 71 (8), 59 (69), 58 (6), 

calculated for C^H^ySi m/e (M-15) 153.10995, measured m/e 153.10972. 

Synthesis of 3-butenylallyldimethylsilane 222 

To a stirred solution of excess allylmagnenisum bromide, prepared 

from 1.59 g (13.2 mmol) of allyl bromide and excess Mg turnings in 

50 mL of dry THF under N^, was added 1.00 g (6.76 mmol) of 3-butenyl-

dimethylchlorosilane in one portion. The final mixture was stirred 

under for 8 hours. The reaction mixture was then hydrolyzed with 

excess H^O and diluted with 75 ml of pentane. The pentane layer was 

extracted with HgO, separated, dried over NagSO^, and filtered. All 

of the pentane and other volatiles was removed by rotavapor. Pure 

3-butenylallyldimethylsilane (70%) (181) was isolated by preparative 

GC on a 9 ft, 20% OV-lOl/Chromosorb W column at 120°C: ^H NMR (DCCl^) 

6 0.01 (s, 6H), 0.62-0.67 (m, 2H), 1.54 (d, 3 = 8.07 Hz, 2H), 2.04-

2.09 (m, 2H), 4.81-5.02 (m, 4H), 5.71-5.94 (m, 2H); NMR (DCCl^) 

6 -3.66, 14.11, 23.32, 27.98, 112.87, 135.03, 141.58; mass spectrum 

m/e (% rel. int.) 154 (1), 114 (11), 113 (87), 111 (7), 99 (7), 85 
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(62), 71 (7), 60 (8), 59 (100), calculated for CgH^gSi m/e 154.11778, 

measured m/e 154.11792. 

Vacuum pyrolysis of di-(3-butenyl)dimethylsilane 218 

A slow distillation of 0.2967 g (1.77 mmol) of 218 was done at 

25°C (IX 10"^ mm Hg) through a quartz tube packed with quartz chips 

and heated to 760°C. The pyrolysate was collected in a trap cooled 

by liquid nitrogen and represented a 64% mass recovery. GC analysis 

of the pyrolysate showed one major product and greater than six minor 

products along with 14% unreacted 218. The major compounds were 

isolated by preparative GC on a 9 ft, 20% OV-lOl/Chromosorb W column 

at 100°C and was identified as trimethylsilane 120 (32%). The NMR, 

mass spectrum, and GC retention time exactly matched that of 120 

formed on pyrolysing 59 as well as that of an authentic sample. The 

NMR of 120 also matched that reported by Fleming and Langley (185). 

Vacuum pyrolysis of 3-butenylallyldimethylsilane 222 

A slow distillation of 0.2148 g (1.39 mmol) of 222 was done at 

25°C (1 X 10"^ mm Hg) through a quartz tube packed with quartz chips 

and heated to 760°C. The pyrolysate was collected in a liquid nitrogen 

cooled trap and represented a 77% mass recovery. GC analysis showed 

three new major products in about equal amounts. The three compounds 

were separated by only about 0.15 minutes on an 8i ft, 10% OV-lOl/Chromo-

sorb W column with a temperature program of 70°C to 2Q0°C at 15°C 

per minute. Therefore, they were isolated as a mixture by preparative 

GC on a 15 ft, 20% OV-lOl/Chromosorb W column at 100°C. They were 
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Identified as l,l-dimethyl-l-silacyclopent-3-ene 198 (17%), 1,1-di-

methyl-l-silacyclopent-2-ene 199 (21%) (137), and allylvinyldimethyl-

silane 172 (20%) along with 25% unreacted 222. The NMR and GCMS of 

172 exactly matched that of 172 produced in the pyrolysis of 168. 

The spectra for 198 and 199 are given below. 

l,l-Dimethyl-l-silacyclopent-3-ene 198 The NMR and mass 

spectrum of 198 matched that reported by Barton and Wulff (137). 

NMR (DCCl?) 6 0.14 (2, 6H), 1.27 (broad d, J = 1.1 Hz, AH), 5.85 

(broad s, 2H); mass spectrum m/e (% rel. int.) 112 (34), 98 (11), 

97 (100), 95 (25), 71 (11), 69 (8), 59 (12), 58 (24), 53 (7). 

l,l-Dimethyl-l-silacyclopent-2-ene 199 The NMR and mass 

spectrum of 199 matched that reported by Barton and Wulff (137). 

NMR (DCCl?) 6 0.17 (s, 6H), 0.67-0.72 (m, 2H), 2.45-2.51 (m, 2H), 

5.92 (d of t, 3. = 11.22 Hz, = 2.20 Hz, IH^ a to Si), 6.78 (d of 
30 BC a 

t, = 11.22 Hz, = 2.64 Hz, IH^^ g to Si); mass spectrum m/e 

(% rel. int.) 112 (10), 98 (10), 97 (100), 95 (25), 71 (9), 69 (11), 

59 (7), 58 (9), 55 (9), 53 (7). 

Flow pyrolysis of (3-butenyl)allyldimethylsilane 218 

A flow pyrolysis of 218 (30 yl) was done by dripping 218 through 

a vertical quartz tube packed with quartz chips and heated to 540°C. 

Methyl chloride was used as the carrier gas at a flow rate of 35 mL/min. 

The pyrolysate was collected in a trap cooled to -78°C and was analyzed 

by GC. By GC, there were no peaks that had the same retention time 
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as 3-butenyldimethylchloridesilane 225. In fact, on a 8i ft, 10% 

OV-lOl/Chromosorb W column with a temperature program of 70°-150°C 

at 10°/minute, there were no peaks within 15 seconds of the retention 

time of 225. About 60° of the mixture was unreacted 218, while the 

other consisted of silacyclopentenes 198 and 199 and other minor 

products. 

Synthesis of (4-pentenyl)dimethyIchlorosilane (208) 

To a stirred slurry of 8.1 g (39.1 mmol) of phosphorus penta-

chloride in 25 mL of pentane under was added 5.0 g (39.1 mmol) of 

(A-pentenyl)dimethylsilane 64. The final mixture was stirred for 30 

minutes. The liquid phase was distilled at room temperature under 

vacuum (ca. 0.05 mm Hg) and collected in a flask cooled to -78°C. 

After removal of the solvent, distillation (136°-140°C) gave 3.5 g 

(56%) of (4-pentenyl)dimethylchlorosilane: NMR (DCCl^) 6 0.40 (s, 

6H), 0.76-0.90 (m, 2H), 1.46-1.53 (m, 2H), 2.02-2.13 (m, 2H), 4.92-

5.04 (m, 2H), 5.70-5.84 (m, IH). 

Synthesis of (4-pentenyl)allyloxydimethylsilane 226 

To a stirred solution of 0.72 g (12.3 mmol) of allyl alcohol and 

0.97 g (12.3 mmol) of pyridine in 15 mL of ether under was added 

2.0 g (12.3 mmol) of (4-pentenyl)dimethylchlorosilane in a dropwise 

fashion. The cloudy mixture was then dilute with 100 ml of pentane 

and transferred to a separatory funnel. The pentane layer was extracted 

with saturated NaHCO^ solution, separated, dried over NagSO^, and 

filtered. After removal of the solvent, distillation (87°-95°C/5 mm 
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Hg) afforded 1.5 g (66%) of (4-pentenyl)allyloxydimethylsilane 226: 

NMR (DCCl,) 6 0.10 (s, 6H), 0.57-0.64 (m, 2H), 1.40-1.50 (m, 2H), 

2.03-2.10 (m, 2H), 4.10-4.13 (m, 2H), 4.91-5.27 (m, 4H), 5.71-5.96 

(m, 2H); NMR (DCCl,) 6 -2.03, 16.01, 22.67, 37.35, 63.73, 114.33, 

114.49, 137.41, 138.71; mass spectrum m/e (% rel. int.) 169 (M-15, 2%), 

143 (5), 117 (5), 116 (8), 115 (100), 113 (12), 99 (26), 87 (5), 85 

(17), 75 (10), 61 (9), 59 (32), calculated for C^H^^OSi m/e (M-15) 

169.10487, measured m/e 169.10523. Elemental analysis calculated for 

CioH2oSiO: C, 65.14; H, 10.96. Found: C, 65.26; H, 11.14. 

Synthesis of (4-pentenyl)dimethylphenylsilane 233 

To a stirred mixture of excess Mg turnings in 50 mL of dry THF 

under was added a small portion of 5-bromo-l-pentene for initiation. 

The remainder of the 5-bromo-l-pentene (5.0 g, 33.7 mmol total) and 

5.7 g (33.7 mmol) of dimethylphenylchlorosilane were dissolved in 50 mL 

of dry THF and added dropwise to the stirred solution. After stirring 

for 12 hours, the reaction mixture was hydrolyzed with excess H^O 

and transferred to a separatory funnel containing 150 mL of pentane. 

The pentane layer was extracted with HgO, separated, dried over Ns^SO^, 

and filtered. After solvent removal, distillation (110°-115°C/2 mm 

Hg) of the residue afforded 4.4 g (65%) of (4-pentenyl)dlmethylphenyl-

silane 233: ^H NMR (DCCl?) 5 0.27 (s, 6H), 0.74-0.81 (m, 2H), 1.37-

1.50 (m, 2H), 2.04-2.13 (m, 2H), 4.92-5.04 (m, 2H), 5.71-5.85 (m, 

IH), 7.31-7.61 (m, 5H); NMR (DCCl?) 6 -0.89, 17.47, 25.53, 39.68, 
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114.56, 127.75, 128.83, 133.58, 138.84, 139.54; mass spectrum m/e 

(% rel. int.) 204 (1), 154 (17), 136 (13), 135 (100), 126 (20), 121 

(11), 105 (9), 98 (8), calculated for Cj^jH2QSi m/e 204.13343, measured 

m/e 204.13411. Elemental analysis calculated for C^jH2QSi: C, 76.38; 

H, 9.88. Found: C, 75.58; H, 10.15. 

Vacuum pyrolysis of (4-pentenyl)allyloxydimethylsilane 226 

The pyrolysis of 226 was carried out by slowly distilling 0.4338 g 

(2.36 mmol) of 226 at 25°C (1 X 10"^ mm Hg) through a quartz tube 

packed with quartz chips and heated to 780°C. The pyrolysate was 

collected in a trap cooled with liquid nitrogen and represented a 

65% mass recovery. GO analysis of the pyrolysate showed one major 

product along with unreacted 226 (22%). The compound was isolated by 

preparative GC on a 9 ft, 20% OV-lOl/Chromosorb W column at 120°C 

and identified as vinylallyloxydimethylsilane 227 (12%). When the 

pyrolysis was done at 700°C, the yield of unreacted 226 and compound 

227 was 77% and 25%, respectively. The mass recovery at 700°C was 

85%. The spectra of 227 is given below. 

Vinylallyloxydimethylsilane 227 NMR (DCCl^) 6 0.15 (s, 6H), 

4.02-4.04 (m, 2H), 5.01 (d of q, J = 1.90 Hz, = 10-29 Hz, IH), 

5.30 (d of q, J = 1.94 Hz, J^rans " 1^.09 Hz, IH), 5.70-6.18 (m, 4H); 

IR (neat) 1095 cm~^ (SiOC); mass spectrum m/e (% rel. int.) 142 (1), 

128 (8), 127 (74), 115 (9), 101 (18), 100 (12), 99 (100), 97 (18), 

87 (10), 85 (45), 75 (39), 71 (37), 61 (27), 59 (60), 55 (10), 47 

(11); calculated for C^H^Si m/e 101.04227, measured m/e 101.04218. 
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Vacuum pyrolysis of (4-pentenyl)dimethylphenylsilane 233 

A slow distillation of 0.3220 g (1.58 mmol) of 233 was done at 

25°C (1 X 10"^ mm Hg) through a quartz tube packed with quartz chips 

and heated to 780°C. The pyrolysate was collected in a trap cooled 

with liquid nitrogen and represented a 69% mass recovery. The 

pyrolysate was analyzed by GC which showed three major products and a 

12% yield of unreacted 233. The compounds were isolated by preparative 

GC on a 5 ft, 12% OV-lOl/Chromosorb W column at 130°C. They were 

identified according to their spectral properties, given below, as 

dimethylphenylsilane (10%) (184), allyldimethylphenylsilane (6%) (185), 

and vinyldimethylphenylsilane 234 (19%) (183). When the pyrolysis of 

233 was carried out at 700°C, unreacted 233 was recovered in 38% 

yield along with 32% yield of vinyldimethylphenylsilane 234. Only 

trace amounts of dimethylphenylsilane and allyldimethylsilane were 

detectable by GC. The mass recovery at 700°C was 83%. 
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Dimethylphenylsilane NMR (DCCl^) 6 0.33 (d, J = 4.0 Hz, 

6H), 4.27-4.67 (m, IH), 7.25-7.70 (m, 5H); IR (neat) 2135 cm"^ (SiH); 

mass spectrum m/e (% rel. int.) 136 (38), 135 (25), 122 (12), 121 (100), 

119 (6), 105 (21), 95 (5), 93 (6), 91 (5), 79 (7), 77 (5), 69 (5), 

67 (8), 60 (6), 59 (10), 58 (87), 55 (5), 53 (20), 51 (6). 

Allyldimethylphenylsilane The NMR matched that published 

by Fleming and Langley (185). NMR (DCCl^) 6 0.27 (s, 6H), 1.75 

(d, 8.0 Hz), 4.63-5.10 (m, 2H), 5.37-6.20 (m, IH), 7.20-7.68 (m, 5H); 

mass spectrum m/e (% rel. int.) 176 (1), 136 (13), 135 (100), 107 

(6), 105 (9), 53 (5). 

Vinyldimethylphenylsilane 234 ^H NMR (DCCl^) 6 0.41 (s, 6H), 

5.82 (d of d, = 3.87 Hz, = 20.16 Hz, IH), 6.12 (d of d, 

J = 3.87 Hz, J . = 14.58 Hz, IH), 6.30-6.41 (m, IH), 7.39-7.60 
yclll UXo 

(m, 5H); mass spectrum m/e (% rel. int.) 162 (23), 148 (13), 147 (100), 

145 (7), 135 (23), 122 (9), 121 (79), 107 (8), 105 (20), 93 (6), 79 

(6), 67 (6), 59 (10), 58 (8), 55 (7), 53 (17), calculated for C^qH^^Si 

m/e 162.08702, measured m/e 162.08648. 

Synthesis of (3-butenyl)dimethylchlorosilane 225 

To a stirred slurry of 1.83 g (8.77 mmol) of anhydrous phosphorus 

pentachloride in 15 mL of dry pentane under N^ was added 1.00 g (8.77 

mn,ol) of 3-butenyldimethylsilane 59 in a dropwise fashion. The final 

mixture was stirred for ca. 15 minutes then distilled at 25°C/0.05 mm 

Hg and collected in a flask cooled to -78°C. The distillate was 

filtered through celite and washed with dry pentane. Fractional 
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distillation, after removal of excess pentane, afforded 225 (209) 

(123°-126°C) in 77% yield (1.00 g): NMR (DCCl^) 6 0.30 (s, 6H), 

0.63-1.00 (m, 2H), 1.83-2.30 (m, 2H), A.67-5.17 (m, 2H), 5.43-6.10 

(m, IH); mass spectrum m/e {% rel. int.) 148 (2), 115 (6), 97 (15), 

95 (11), 93 (28), 87 (8), 76 (7), 75 (100), 61 (23), 47 (12). 

Synthesis of (3-butenyl)allyloxydimethylsilane 226 

To a stirred solution of 0.79 g (13.5 mmol) of allyl alcohol and 

an equivalent amount of pyridine in 25 mL of dry ether under was 

added 2.00 g (13,5 mmol) of (3-butenyl)dimethylchlorosilane 225 in a 

dropwise fashion. The final cloudy mixture was stirred for 10 minutes 

then filtered through celite. All of the volatiles were then carefully 

removed by distillation between 35° and 100°C. The remaining residue 

was distilled at 25°C/0.05 mm Hg and collected in a flask cooled to 

-78°C. GC analysis of the distillate showed one product which was 

identified as (3-butenyl)allyloxydimethylsilane 226 (92%): NMR 

6 0.12 (s, 6H), 0.68-0.74 (m, 2H), 2.06-2.14 (m, 2H), 4.12-4.14 (m, 

2H), 4.87-5.28 (m, 4H), 5.80-5.97 (m, 2H); NMR 6 -1.98, 15.58, 

27.27, 63.73, 112.87, 114.44, 137.30, 141.26; IR (neat) 1100 cm"^ 

(SiOC); mass spectrum m/e (% rel. int.) 155 (M-15, 11%), 128 (8), 

127 (7), 117 (21), 116 (12), 115 (100), 101 (10), 99 (17), 85 (13), 

75 (15), 59 (8), calculated for CgH^^SiO m/e (M-15) 155.08922, 

measured m/e 155.08871. 
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Vacuum pyrolysis of (3-butenyl)allyloxydimethylsilane 226 

Run 1 A slow distillation of 0.1524 g (0.90 mmol) of 226 

was done at 25°C (1 X 10~^ mm Hg) through a quartz tube packed with 

quartz chips and heated to 760°C. The pyrolysate was collected in a 

liquid nitrogen cooled trap and represented a 69% mass recovery. About 

80% of the pyrolysate was unreacted 226 and the remaining 20% consisted 

of about thirteen volatile components. 

Run 2 0.1395 g (0.820 mmol) Of 226 was pyrolyzed affording 

a mass recovery of 44%. About eighteen volatile products along with 

226 were observable by GC. 

Synthesis of allyldimethylchlorosilane 

A modified technique of hydrogen-halogen exchange between a silane 

and triphenylmethyl chloride (210) was used to prepare allyldimethyl

chlorosilane. Thus, 22.24 g (80.0 mmol) of triphenylmethyl chloride 

(used directly as purchased) was dissolved in 100 mL of chloroform 

to which was added 4.00 g (40.0 mmol) of allyldimethylchlorosilane 

in one portion. The final solution was stirred at room temperature 

under for 25 hours. The liquid phase was then removed by 

distillation at room temperature (0.05 mm Hg) and collected in a flask 

cooled to -78°C (isopropanol/dry ice). Fractional distillation (94°-

97°C) afforded 3.88 g (72%) yield of allyldimethylchlorosilane. 

When the reaction was done on a NMR scale using 0.0353 g (0.353 mmol) of 

allyldimethylsilane and 0.1013 g (0.364 mmol) of triphenylmethyl 

chloride (95% purity) dissolved in 0.4192 g of dueterio chloroform, 

the yield of allyldimethylchlorosilane was 95% by NMR. 
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Allyldlmethylchlorosilane The NMR and GC retention time of 

allyldimethylchlorosilane exactly matched that of an authentic sample 

which is commercially available (Petrarch): NMR (DCCl^) 6 0.45 

(S, 6H), 1.83 (d, J = 8.0 Hz, 2H), 4.73-5.25 (m, 2H), 5.34-6.08 (m, 

IH); mass spectrum m/e {% rel. int.) 134 (7), 119 (4), 99 (7), 95 

(45), 94 (10), 93 (100), 83 (6), 81 (4), 79 (11), 67 (7), 65 (24), 

63 (22), 59 (6). 

Synthesis of allyloxyallyldimethylsilane 236 

Method 1 The lithium alkoxide of allyl alcohol was prepared 

under by addition of 38.7 mL (55.7 mmol) of 1.44 M n-buthyl lithium 

to a stirred solution of 3.2 g (55.7 mmol) of allyl alcohol in 40 mL 

of ether cooled to -78°C. To this stirred solution was added 5.0 g 

(37.1 mmol) of allyldimethylchlorosilane in a dropwise fashion. The 

final solution was stirred at -78°C for 15 minutes then allowed to 

warm to room temperature for 30 minutes. The reaction mixture was 

then hydrolysed with excess saturated NaHCO^. The ether layer was 

extracted with saturated NaHCO^, seperated, dried over NagSO^, and 

filtered. Solvent removal was followed by distillation (130°-133°C) 

which gave 3.7 g (64%) of allyloxyallyldimethylsilane 236. 

Method 2 To a stirred solution of 0.86 g (14.8 mmol) of allyl 

alcohol and an equivalent amount of pyridine dissolved in dry pentane 

under was added 2.00 g (14.8 mmol) of allyldimethylchlorosilane in 

a dropwise fashion. The final cloudy solution was stirred for 15 

minutes then filtered through celite and washed with dry pentane. 
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After removal of the solvent, distillation (130°-134°C) of the residue 

afforded 1.46 g (63%) of allyloxyallyldimethylsiiane 236. 

Allyloxyallyldimethylsilane 236 NMR (DCCl^) ô 0.13 (s, 6H), 

1.64 (d, J = 8.08 Hz, 2H), 4.14-4.17 (m, 2H), 4.84-4.93 (m, 2H), 

5.09-5.28 (m, 2H), 5.72-5.97 (m, 2H); NMR (DCCl^) 6 -2.41, 24.51, 

63.95, 113.74, 114.55, 133.94, 137.19; IR (neat) 1086 cm"^ (SiOC); 

mass spectrum m/e (% rel. int.) 156 (1), 116 (12), 115 (100), 114 

(10), 113 (9), 99 (24), 87 (12), 85 (65), 75 (29), 61 (19), 60 (9), 

59 (89), calculated for CgH^^Si m/e 156.09705, measured m/e 156.09730. 

Elemental analysis calculated for CgH^^Si: C, 61.46; H, 10.34. Found: 

C, 61.30; H, 10.58. 

Vacuum pyrolysis of allyloxyallyldimethylsilane 236 

A slow distillation of 236 was done at 25°C (IX 10"^ mm Hg) 

through a quartz tube packed with quartz chips and heated to various 

temperatures. The pyrolysate was collected in a trap cooled with 

liquid nitrogen and was analyzed by GC. 

At 810°C Compound 236, 0.356 g (2.28 mmol), was pyrolyzed 

giving an 84% mass recovery of pyrolysate. GC analysis showed very 

little decomposition of 236. 

At 860°C Compound 236, 0.242 g (1.55 mmol), was pyrolyzed 

giving a 76% mass recovery of pyrolysate. GC analysis still showed 

very little decomposition of 236, but new volatile peaks had appeared. 

At 900°C Compound 236, 0.170 g (1.09 mmol), was pyrolyzed 

giving a 54% mass recovery of pyrolysate. GC analysis showed a complex 

mixture of more than ten products. By GCMS, some of the compounds 
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present in the mixture were: 1-propenyldimethylvinylsilane 126 (21), 

112 (11), 111(100), 85 (15), 55 (5); hexamethylcyclotrisiloxane (Cy) 

209 (12), 208 (20), 207 (P-15, 100), 191 (11), 133 (11), 96 (27); 

another C^H^gO^Si^ isomer, recovered starting material 236, two isomers 

of 236, and a compound with the molecular formula Cio'^22^^2^2 

Me2Si=0). The mass spectrum of exactly matched that of an authentic 

sample (Petrarch). None of the products were isolable. 

Copyrolysis of 236 and dimethyldimethoxysilane 239 

A solution consisting of 0.0458 g (0.294 mmol) of 236 and 0.3592 g 

(2.27 mmol) of dimethyldimethoxysilane was slowly dripped into a 

verticle quartz tube packed with quartz chips and heated to 650°C. A 

flow of nitrogen (35 mL/min) was used as a carrier gas. The pyrolysate 

was collected in a trap cooled to -78°C and represented a 53% mass 

recovery. GC analysis showed one new major peak along with dimethyl

dimethoxysilane 239. The compound was isolated by preparative GC on 

a 15 ft, 20% OV-lOl/Chromosorb W column at 120°C and was identified 

as sym-dimethoxytetramethyldisiloxane 240 (190) (93%). NMR (C^D^) 

6 0.14 (s, 12H), 3.39 (s, 6H); IR (neat) 1107 cm~^ (SiOC), 1072 cm"^ 

(SiOSi); mass spectrum m/e (% rel. int.) 181 (8), 180 (15), 179 (P-15, 

90), 163 (6), 151 (9), 150 (17), 149 (100), 133 (21), 119 (35), 105 

(11), 103 (10), 89 (13), 82 (27), 75 (13), 74 (9), 73 (13), 67 (13), 

59 (33). 
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Flow pyrolysis of dimethoxydimethylsilane 239 

A N^-flow (35 mL) pyrolysis was carried out by dripping 96.3 mg 

(0.802 mmol) of 239 through a vertical quartz tube packed with quartz 

chips and heated to 650°C. The pyrolysate, represented by a 40% 

mass recovery (no attempt to optimize), was collected in a trap cooled 

to -78°C. Along with unreacted 239, sym-dimethoxytetramethyldisiloxane 

240 (190) was formed in 2% yield. Compound 240 was isolated by 

preparative GC and its spectral properties and GC retention time 

matched that of 240 obtained from the copyrolysis of allyoxyallyldi-

methylsilane 236 and 239. 

Flow pyrolysis of allyloxyallyldimethylsilane 236 

Nitrogen-flow A nitrogen-flow pyrolysis (35 mL/min) was done 

by slowly dripping 236 (50 pi) through a vertical quartz tube packed 

with quartz chips and heated to 500°C and 560°C. The pyrolysate was 

collected in a trap cooled to -78°C (isopropanol/dry ice) and was 

analyzed by GC. The major product at both temperatures, 70% at 500°C 

and 50% at 560°C, was unreacted 236. However, a complex mixture of 

other products were also formed from which was identifiable by GCMS 

comparison with an authentic sample. The relative ratio of products 

presence in greater than 1% GC area was obtained. 

Methyl chloride-flow A methyl chloride-flow pyrolysis of 236 

(50 yl) was done as described above at the same temperatures. GC 

analysis showed that the relative ratios of the products were the same 

as in the nitrogen-flow experiment. Furthermore, no significant amount 
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of a compound with a C^H^^SICIO molecular formula could be found in 

the GCMS. (GCMS) was also formed in this pyrolysis. 

Flow pyrolysis of allyloxydimethylsilane 116 

A flow pyrolysis of 0.2836 g (2.74 mmol) of 116 was done by 

dripping 116 through a vertical quartz tube packed with quartz chips 

and heated to 650°C. A flow of nitrogen (35 mL/min) was used as a 

carrier gas. The pyrolysate was collected in a trap cooled to -78°C 

and represented a 38% mass recovery. GC analysis showed a trace 

amount (<2%) of (GCMS identification) along with one major compound 

that was isolated by preparative GC on a 15 ft, 20% OV-lOl/Chromosorb 

W column at 120°C. The compound was identified as 1-allyloxy-l,1,3,3-

tetramethyldisiloxane 242 (193) (11%): NMR (C^D^) 6 0.12 (s, 6H), 

0.15 (d, J = 2.77 Hz, 6H), 4.12-4.14 (m, 2H), 4.96-5.05 (m, collapses 

to s at 4.98 and m 4.99-5.05 with hv at 0.15, 2H), 5.24-5.34 (m, IH), 

5.79-5.91 (m, IH); ^^C NMR (CgD.) 6 -1.24, 0.55, 63.12, 113.82, 137.28; 

IR (neat) 1072 (SiOSiOC); mass spectrum m/e (% rel. int.) 190 (1), 

189 (2), 175 (8), 149 (14), 135 (10), 134 (13), 133 (100), 75 (8), 

73 (10), 59 (11). 

Copyrolysis of 116 and dimethyldimethoxysilane 239 

A solution of 0.0440 g (0.404 mmol) of 116 and 0.4143 g (3.30 mmol) 

of dimethyldimethoxysilane was slowly dripped into a vertical quartz 

tube packed with quartz chips and heated to 650°C. A flow of nitrogen 

(35 mL/min) was used as a carrier gas. A 52% mass recovery of 

pyrolysate was collected in a trap cooled to -78°C (isopropanol/dry 
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ice). GC analysis showed three new major products along with dimethyl-

dimethoxysilane 239. The compounds were isolated by preparative GC 

on a 15 ft, 20% OV-lOl/Chromosorb W column at 120°C and were identified 

as l-methoxy-l,l,3,3-tetramethyldisiloxane 243 (4%), allyloxymethoxyldi-

methylsilane 244 (5%), and sym-dimethoxytetramethyldisiloxane 240 (190) 

(15%). All spectra properties and GC retention times of 240 exactly 

matched that of 240 obtained from the copyrolysis of 239 with allyloxy-

allyldimethylsilane 236. The spectra of 243 and 244 are given below, 

1-Methoxy-l,1,3,3-tetramethyldisilane 243 NMR (C,D,) 6 
Q O 

0.12 (s, 6H), 0.17 (d, J = 3.5 Hz, 6H), 3.35 (s, 3H), 4.80-5.15 

(m, IH); IR (neat) 2137 cm~^ (SiH), 1072 cm"^ broad (SiOSiOC); mass 

spectrum m/e (% rel. int.) 164 (1), 163 (8), 151 (7), 150 (13), 149 

(100), 133 (18), 120 (10), 119 (79), 103 (8), 89 (9), 74 (10), 73 (16), 

59 (43). 

Allyloxymethoxydimethylsilane 244 NMR (C^Dg) 6 0.09 (s, 

6H), 3.33 (s, 3H), 4.09-4.12 (m, 2H), 4.77-5.04 (m, IH), 5.27-5.34 

(m, IH), 5.79-5.91 (m, IH); IR (neat) 1120 cm"^, 1057 cm"^ (SiOC); 

mass spectrum m/e (% rel. int.) 146 (5), 132 (11), 131 (100), 118 (5), 

117 (49), 115 (5), 114 (12), 103 (6), 102 (10), 100 (6), 90 (8). 

Synthesis of l,2-diallyloxy-l,l,2,2-tetramethyldisilane 245 

The method of Hosomi and coworkers (195) was used to prepare 

245. The lithium alkoxide of allyl alcohol was prepared under 

by adding 25.7 mL (54.0 mmol) of 2.1 M n-butyl lithium to a solution 

of 3.1 g (54.0 mmol) of allyl alcohol in 30 mL of ether cooled to 
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-78°C (isopropanol/dry ice). To this stirred solution was added 5.0 g 

(26.9 mmol) of l,2-dichloro-l,l,2,2-tetramethyIdisilane in a dropwise 

fashion. The liquid phase was then removed by distillation (50°C 

pot temperature/0.05 mm Hg) and collected in a flask cooled to -78°C. 

The volatile components were removed by distillation leaving 5.5 g of 

a residue which was 95% l,2-diallyloxy-l,l,2,2-tetramethyldisilane 245 

(195) (89%) by GC: NMR (DCCl,) <S 0.23 (s, 12H), 4.05-4.25 (m, 4H), 

4.93-5.45 (m, 4H), 5.62-6.28 (m, 2H); IR (neat) 1028 cm"^ (SiOC); mass 

spectrum m/e {% rel. int.) 189 (Nk41, 9%), 135 (10), 134 (16), 133 

(100), 119 (8), 117 (10), 115 (17), 85 (20), 75 (17), 73 (24), 59 (42). 

Vacuum pyrolysis of l,2-diallyloxy-l,l,2,2-tetramethyldisilane 245 

A slow distillation of 0.1560 g (0.678 mmol) of 245 was carried 

out at 25°C (1 X 10"^ mm Hg) through a quartz tube packed with quartz 

chips and heated to 760°C. The pyrolysate was collected in a trap 

cooled with liquid nitrogen and represented a 66% mass recovery. GC 

analysis of the pyrolysate showed four major products that were isolated 

by preparative GC on a 9 ft, 20% SE-30/Chromosorb W column at 130°C. 

Three of the compounds were identified as diallyloxydimethylsilane 247 

(20%) (196), l-allyloxy-3-allyl-hexamethyltrisiloxane 249 (18%) (195). 

The spectra and GC retention time of 247 exactly matched that of an 

authentic sample (see the Experimental section of this dissertation). 

The fourth product was isolated as a mixture of CgH^^O isomers (8%) 

based on GCMS and NMR. The isomers could not be separated using 

preparative GC. The spectra for 249 is given below. 
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l,5-Diallyl-l,l,3,3,5,5-hexamethyltrisiloxane 249 NMR 

(CLDgO) 6 0.02 (s, 6H), 0.07 (s, 12H), 1.53 (d, J = 8.0 Hz, 4H), 

4.60-5.00 (m, 4H), 5.41-6.14 (m, 2H); NMR (C^DgO) 5 -0.10, 1.41, 

26.77, 113.77, 135.12; IR (neat) 1055 cm"^ (SiOSiOSi); mass spectrum 

m/e (% rel. int.) 273 (M-15, 1%), 248 (12), 247 (56), 231 (10), 207 

(9), 206 (7), 205 (35), 191 (9), 189 (9), 104 (10), 103 (60), 99 (68), 

96 (12), 95 (13), 88 (9), 74 (9), 73 (100), 59 (43), calculated for 

^ll'^25^S°2 (M-15) 273.11624, measured m/e 273.11662. 

Synthesis of l-allyloxy-3-allyl-l,l,3,3-tetramethyldisiloxane 248 

To a stirred solution of 11.0 g (54.0 mmol) of 1,3-dichloro-

tetramethyldisilane (Petrarch) in 15 mL of dry ether under was 

added 200 mL (55.0 mmol) of 0.26 M allylmagnesium bromide in ether 

dropwise for 1.5 hours. This solution was then cooled to -78°C and 

150 mL (55.0 mmol) of the lithium alkoxide (0.37 M) of allyl alcohol 

in ether was added in a dropwise fashion. The reaction mixture was 

allowed to warm to room temperature then filtered through celite and 

washed with pentane. After solvent removal, a pure sample of 1-allyl-

oxy-3-allyl-l,l,3,3-tetramethyldisiloxane 248 was obtained by 

preparative GC on a 5 ft, 12% OV-lOl/Chromosorb W column at 140°C. 

Also formed in the reaction was l,3-diallyloxy-l,l,3,3-tetramethyl-

disiloxane: NMR (DCCl^) 0.12 (s, 12H), 4.12-4.34 (m, 4H), 4.95-

5.48 (m, 4H), 5.68-6.30 (m, 2H). 
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l-Allyloxy-3-allyl-l,l,3,3-tetramethyldisiloxane 248 NMR 

(CjDgO) 6 0.03 (s, 6H), 0.05 (s, 6H), 1.55 (d, J = 8.0 Hz, 2H), 3.95-

4.15 (m, 2H), 4.59-6.24 (m, 6H); NMR (CLD,0) 6 -0.81, -0.21, 26.66,  

63.55, 113.77, 114.10, 135.01, 138.31; IR (neat) 1065 cm"^ (SiOSi), 

1140 cm~^, 1157 cm~^ (SiOC); mass spectrum m/e (% rel. int.) 215 (M-

15, 1%), 189 (47), 149 (10), 135 (11), 134 (13), 133 (100), 119 (11), 

103 (5), 94 (9), 73 (19), 66 (14), 59 (11), calculated for C^H^^SigOg 

m/e (M-15) 215.09236, measured m/e 215.09292. Elemental analysis 

calculated for ^^0*^22^^2'^2' 52.11; H, 9.64. Found: C, 51.85, 

H, 9.85. 

Copyrolysis of l,2-diallyl-l,l,2,2-tetramethyldisilane 245 and 2,3-di-

methylbutadiene 

A solution of 0.1352 g (0.588 mmol) of 245 and a 4.4 fold excess 

of 2,3-dimethylbutadiene was dripped through a vertical quartz tube 

packed with quartz chips and heated to 500°C. A flow of (35 mL/min) 

was used as a carrier gas and the pyrolysate was collected in a trap 

cooled to -78°C. The mass recovery was 52% (no attempts to optimize). 

GC analysis revealed three major products along with unreacted 245 

(3%) and excess 2,3-dimethylbutadiene. The compounds were isolated 

by preparative GC on a 15 ft, 20% OV-lOl/Chromosorb W column at 120°C 

and were identified as diallyloxydimethylsilane 247 (7%) (196), 

l-allyloxy-3-allyl-l,l,3,3-tetramethyldisiloxane 248 (1%), and 1,1,3,4-

tetramethyl-l-silacyclopent-3-ene 250 (11%) (211). All spectral 

properties and GC retention times of 247 and 248 exactly matched those 
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of the compounds produced in the vacuum pyrolysis of 245. The proton 

NMR of 250 matched that reported in the literature (210): NMR 6 

(C^DgO) 0.10 (s, 6H), 1.27 (m, 4H), 1.63 (m, 6H); NMR (C^DgO) 

6 -1.87, 19.40, 25.96, 130.99; mass spectrum m/e (% rel, int.) 140 (54), 

126 (12), 125 (100), 123 (21), 109 (10), 98 (8), 97 (24), 85 (23), 

83 (22), 73 (13), 69 (9), 67 (10), 59 (75), 58 (14), 55 (11), 53 (9). 

Copyrolysis of 245 and tetramethoxysilane 

A Ng-flow (35 mL/min) pyrolysis of 0.2681 g (1.17 mmol) of 245 

dissolved in an eight fold excess of tetramethoxysilane was done by 

dripping the solution through a quartz tube packed with quartz chips 

and heated to 500°C. The pyrolysate, represented by a 78% mass 

recovery, was collected in a trap cooled to -78°C. GCMS analysis 

showed as the only major products diallyloxydimethylsilane 247, 

l-allyloxy-3-allyl-l,l,3,3-tetramethyldisiloxane 248, and allyloxy-

methoxydimethylsilane 244. The ratio of these products was approx

imately 2:4:1, respectively. 

Synthesis of 1-allyloxypentamethyldisilane 253 

The synthesis of 1-allyloxypentamethyldisilane was accomplished 

by using the method of Hosomi and coworkers (195). The lithium 

alkoxide of allyl alcohol was prepared under by adding 15 mL (31.0 

mmol) of 2.1 M n-butyl lithium to a stirred solution of 1.9 g (33.0 

mmol) of allyl alcohol in 100 mL of ether cooled to -78°C. To this 

stirred solution was added 5.0 g (30.0 mmol) of 1-chloropentamethyl-

disilane in a dropwise fashion. The final reaction mixture was 
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allowed to warm to room temperature then distilled (25°C/0.05 mm Hg) 

and collected in a flask cooled to ~7d°C. After removal of the solvent, 

distillation (146°-155°C) of the residue gave 4.3 g (76%) of 1-allyl-

oxypentamethyldisilane 253 (195): NMR (DCCl^) ô 0.07 (s, 9H), 

0.17 (s, 6H), 4.00-4.18 (m, 2H), 4.92-5.46 (m, 2H), 5.53-6.17 (m, 

IH); NMR (DCCl^) 6 -2.03, -0.73, 64.49, 114.33, 137.4; IR (neat) 

1072 (SiOC); mass spectrum m/e (% rel. int.) 173 (M-15, 1%), 149 (8), 

148 (15), 147 (M-41, 100%), 133 (23), 131 (13), 117 (11), 115 (13), 

85 (17), 75 (9), 73 (60), 59 (27). 

Synthesis of allyloxytrimethylsilane 254 

The synthesis of allyloxytrimethylsilane was accomplished using 

the method of Chose (199). To a stirred solution of 2.7 g (46.0 mmol) 

of allyl alcohol and 3.6 g (46.0 mmol) of pyridine in 75 mL of ether 

under Ng was added 5.0 g (46.0 mmol) of trimethylchlorosilane in a 

dropwise fashion. After stirring 10 minutes, the reaction mixture 

was transferred to a separatory funnel and the ether layer extracted 

with saturated NaHCO^ solution. The ether layer was separated, dried 

over NagSO^; and filtered. After removal of the solvent, distillation 

(90°-95°C) of the residue gave 5.1 g (85%) of allyloxytrimethylsilane 

254 (195,199): NMR (DCCl^) 5 0.20 (s, 9H), 4.07-4.27 (m, 2H), 

4.94-5.48 (m, 2H), 5.48-6.33 (m, IH); IR (neat) 1069 cm"^ (SiOC); mass 

spectrum m/e (% rel. int.) 130 (21), 116 (10), 115 (100), 99 (9), 87 

(10), 85 (56), 75 (20), 73 (46), 61 (14), 59 (68), 59 (68), 57 (12). 



www.manaraa.com

205 

Vacuum pyrolysis of 1-allyloxypentamethyldisllane 253 

Compound 253, 0.1832 g (0.974 mmol), was slowly distilled at 25°C 

(1 X 10"^ mm Hg) through a quartz tube packed with quartz chips and 

heated to 760°C. The pyrolysate was collected in a trap cooled with 

liquid nitrogen and represented a 77% mass recovery. The pyrolysate 

was analyzed by GC which showed three major products. The products 

were isolated by preparative GC on a 15 ft, 20% OV-lOl/Chromosorb W 

column at 130°C. They were identified as allyloxytrimethylsilane 254 

(30%) (195,199), 1-allylpentamethyldisiloxane 255 (13%) (133), and 

l-(trimethylsiloxy)-2-allyl-l,1,2,2-tetramethyldisilane 256 (10%). 

All spectral properties and GC retention time for allyloxytrimethyl

silane 254 exactly matched that of an authentic sample. The spectra 

of 255 and 256 are given below. 

1-Allylpentamethyldisiloxane 255 NMR (C^D^O) 6 0.14 (s, 

15H), 1.64 (d, 3 = 8.0 Hz, 2H), 4.73-5.12 (m, 2H), 5.54-6.33 (m, IH); 

^^C NMR (CjDgO) 6 0.00, 2.01, 26.93, 113.61, 135.22; IR (neat) 1099 

cm~^ (SiOSi); mass spectrum m/e (% rel. int.) 173 (M-15, 9%), 149 (8), 

148 (15), 147 (100), 133 (12), 131 (7), 73 (24), 66 (11), 59 (12). 

l-(Trimethylsiloxy)-2-allyl-l,1,2,2-tetramethyldisilan9 256 

NMR (Ĉ D.O) 0.10(s, 15H), 0.20 (s, 6H), 1.57 (d, J = 8.0 Hz, 

2H), 4.67-5.17 (m, 2H), 5.45-6.23 (m, IH); ^^C NMR (C^D^O) Ô -2.27, 

0.22, 2.12, 27.04, 113.61, 135.22; IR (neat) 1066 cm"^ (SiOSi); mass 

spectrum m/e (% rel. int.) 246 (1), 205 (12), 174 (14), 173 (82), 
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157 (7), 147 (23), 133 (38), 131 (13), 117 (15), 85 (7), 74 (8), 73 

(100),  59 (26).  

Copyrolysis of 253 and 2,3-dimethylbutadiene 

A solution of 0.1295 g (0.687 mmol) of 253 in a ten fold excess 

of 2,3-dimethylbutadiene was dripped through a vertical quartz tube 

packed with quartz chips and heated to 500°C under a flow of (35 

mL/min). The pyrolysate was collected in a trap cooled to -78°C and 

represented an 86% mass recovery. Analysis by GC revealed three 

products in addition to unreacted 253 (12%) and excess 2,3-dimethyl

butadiene. The compounds were identified as 1,1,2,4-tetramethyl-l-

silacyclopent-3-ene 250 (95%) (210), allyloxytrimethylsilane 254 (87%) 

(195,199), and 1-allylpentamethyldisiloxane 255 (4%) (133) based on 

comparison of GCMS data and GC retention time with that of 250 produced 

from the copyrolysis of 245 with 2,3-dimethylbutadiene, that of 254 

and 255 formed in the pyrolysis of 253, and that of an authentic 

sample of 254 (see the Experimental section of this dissertation). 

Copyrolysis of allyloxytrimethylsilane 254 and 1-methoxypentamethyl-

disilane 257 

A solution of 0.185 g (1.43 mmol) of 254 and 0.241 g (1.49 mmol) 

of 257, prepared in 92% yield by the method of Ghose (199), was dripped 

through a quartz tube packed with quartz chips and heated to 500°C. The 

tube was swept with a Ng-flow at 35 mL/min and the pyrolysate collected 

in a trap cooled to -78°C. GC analysis of the pyrolysate (82% mass 

recovery) revealed two new major products along with unreacted 254 
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(4%) and 257 (2%). The compounds were isolated by preparative GC 

on a 9 ft, 20% OV-lOl/Chromosorb W column and were Identified as 1-

allylpentamethyldisiloxane 255 (51%) (133) (spectra exactly matched 

that of 255 obtained from 253) and trimethylmethoxysilane 258 (85%) 

(200): NMR (DCClj) 6 0.12 (s, 9H), 3.4 (s, 3H). The GC retention 

time and NMR of 258 matched that of an authentic sample prepared by 

the method of Chose (199). 

Synthesis of diallyloxydimethylsilane 247 (196) 

To a stirred solution of 6.98 (120.0 mmol) of allyl alcohol and 

an equivalent amount of pyridine in 150 mL of dry ether under was 

added 7.74 (60.0 mmol) of dimethyldichlorosilane in a dropwise fashion. 

The final cloudy solution was stirred for 15 minutes then filtered 

through celite and washed with dry ether. Excess ether was then 

removed by rotavapor, the residue diluted with 75 mL of pentane and 

filtered again thru celite. After removal of the pentane, distillation 

of the residue (65°-68°C/12 mm Hg) afforded 9.3 g (91%) of 247 (196): 

NMR (DCCI3) 6 0.12 (s, 6H), 4.07-4.27 (m, 4H), 4.90-5.45 (m, 4H), 

5.60-6.24 (m, 2H); ^^C NMR (C^D^O) 6 -3.08, 63.77, 114.20, 138.20; 

IR (neat) 1136, 1082, 1036 cm"^ (COSiOC); mass spectrum 172 (1), 157 

(15), 143 (13), 131 (16), 130 (29), 129 (40), 117 (8), 116 (17), 115 

(45), 114 (50), 102 (8), 101 (100), 99 (71), 87 (13), 85 (47), 77 (35), 

75 (56), 61 (27), 59 (66), 47 (17). 
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Vacuum pyrolysis of diallyloxydimethylsilane 247 

A slow distillation of 0.2146 g (1.24 mmol) of 247 was carried 

out at 25°C (1 X 10"^ mm Hg) through a quartz tube packed with quartz 

chips and heated to 770°C. The pyrolysate, which represented an 80% 

mass recovery, was collected in a liquid nitrogen cooled trap. Analysis 

of the pyrolysate by GC revealed no products with shorter retention 

times than that of 247 which made up about 70% of the mixture. The 

other major components were isomeric to 247 of which there were a total 

of six by GCMS: m/e (% rel. int.) 171 (M-1, 2%), 157 (23), 143 (23), 

131 (25), 130 (53), 129 (61), 127 (9), 117 (10), 116 (28), 115 (68), 

114 (72), 102 (9), 101 (95), 100 (12), 99 (100), 87 (17), 85 (60), 

77 (35), 74 (64), 61 (27), 60 (9), 59 (74), 47 (18); m/e (% rel. int.) 

171 (M-1, 1%), 157 (11), 143 (23), 131 (13), 130 (49), 129 (41), 117 

(10), 116 (62), 115 (72), 114 (62), 113 (11), 101 (18), 100 (10), 

87 (14), 85 (56), 77 (21), 75 (47), 61 (21), 59 (74), 47 (17); m/e 

(% rel. int.) 172 (32), 157 (40), 143 (30), 131 (11), 130 (46), 129 

(43), 127 (16), 117 (10), 116 (13), 115 (33), 114 (36), 113 (18), 

101 (24), 99 (70), 85 (11), 77 (19), 75 (100), 61 (15), 59(22), 47 

(13); m/e (% rel. int.) 172 (24), 157 (44), 144 (21), 143 (25), 131 

(10), 130 (34), 129(45), 127 (12), 117 (10), 115 (24), 114 (19), 

113 (14), 101 (59), 99 (62), 88 (15), 85 (10), 79 (14), 77 (72), 75 

(100), 61 (23), 59 (28), 58 (15), 57 (12), 55 (11), 47 (21); m/e (% 

rel. int.) 172 (39), 157 (39), 143 (21), 131 (11), 130 (52), 129 (45), 

127 (12), 117 (12), 116 (11), 115 (29), 114 (30), 113 (18), 101 (21), 
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99 (61), 85 (12), 77 (23), 75 (100), 61 (13), 59 (27), 58 (11), 55 (11), 

47 (16); m/e (% rel. int.) 172 (38), 171 (13), 157 (73), 144 (24), 

143 (29), 131 (37), 130 (94), 129 (100), 117 (10), 115 (19), 113 (11), 

101 (69), 99 (63), 91 (12), 88 (18), 85 (10), 79 (19), 77 (67), 75 

(91), 61 (21), 59 (30), 58 (16), 57 (10), 47 (20). 

At 830°C (1 X 10"^ mm Hg), the mass recovery was 61%. GO analysis 

revealed no significant (<5%) amount of products with retention times 

shorter than 247. Compound 247 was the major product (ca. 50% of the 

mixture) along with the six isomeric compounds. 
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